PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais

Detalhes bibliográficos
Autor(a) principal: Barros, George Oliveira
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UEFS
Texto Completo: http://localhost:8080/tede/handle/tede/389
Resumo: The realization of an accurate diagnosis from histological images requires pathologists with practical experience because the characteristics of these images lead to a subjective analysis, which often hamper the accuracy of diagnosis. Systems that help to achieve better diagnoses can minimize doubts and improve the quality of diagnosis, influencing on increasing the effectiveness of medical treatments. This paper describes the research and development of PathoSpotter, a computer system to aid in the identification of diseases from histological images. The PathoSpotter proposes to reduce the lack of support work to histopathological diagnosis of renal diseases since much has been done in the area of cancer, but there is few published material in relation to the Digital Pathology applied to nephrology and hepatology. Our goal in this study was to apply the PathoSpotter the classification of proliferative glomerulopathy, which is a family of primary diseases affecting the kidneys. The work was based on a data set consisting of 811 histological pictures glomeruli and classical techniques of processing digital images and histopathology were used. The PathoSpotter presented a performance of 88.4% accuracy, which was similar to other Digital Pathology jobs that can be found in the literature.
id UEFS_563a04a6436c2b587a2aedcbca0f3bd1
oai_identifier_str oai:tede2.uefs.br:8080:tede/389
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Duarte, Angelo Amâncio36526541534http://lattes.cnpq.br/6170151743824191Barros, George Oliveira2016-09-13T21:44:53Z2016-02-29BARROS, George Oliveira. PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais. 2016. 108 f. Dissertação (Mestrado em Computação Aplicada)- Universidade Estadual de Feira de Santana, Feira de Santana, 2016.http://localhost:8080/tede/handle/tede/389The realization of an accurate diagnosis from histological images requires pathologists with practical experience because the characteristics of these images lead to a subjective analysis, which often hamper the accuracy of diagnosis. Systems that help to achieve better diagnoses can minimize doubts and improve the quality of diagnosis, influencing on increasing the effectiveness of medical treatments. This paper describes the research and development of PathoSpotter, a computer system to aid in the identification of diseases from histological images. The PathoSpotter proposes to reduce the lack of support work to histopathological diagnosis of renal diseases since much has been done in the area of cancer, but there is few published material in relation to the Digital Pathology applied to nephrology and hepatology. Our goal in this study was to apply the PathoSpotter the classification of proliferative glomerulopathy, which is a family of primary diseases affecting the kidneys. The work was based on a data set consisting of 811 histological pictures glomeruli and classical techniques of processing digital images and histopathology were used. The PathoSpotter presented a performance of 88.4% accuracy, which was similar to other Digital Pathology jobs that can be found in the literature.A realização do diagnóstico preciso a partir de imagens histológicas requer médicos patologistas com vasta experiência prática, pois as características dessas imagens conduzem a uma análise subjetiva que muitas vezes dificultam a exatidão do diagnóstico. Sistemas que auxiliam a obtenção de melhores diagnósticos podem minimizar dúvidas e melhorar a qualidade dos diagnósticos, influenciando no aumento da eficácia dos tratamentos médicos. Este trabalho descreve a pesquisa e o desenvolvimento do PathoSpotter, um sistema computacional para auxílio na identificação de patologias a partir de imagens histológicas. O PathoSpotter se propõe a reduzir a carência de trabalhos de apoio ao diagnóstico histopatológico das doenças renais, já que muito tem sido feito na área de neoplasias, mas há pouco material publicado em relação à Patologia Digital aplicada à nefrologia ou hepatologia. Nosso objetivo neste trabalho foi aplicar o PathoSpotter na classificação das glomerulopatias proliferativas, que é uma família de doenças primárias que afetam os rins. O trabalho se baseou em um conjunto de dados composto por 811 imagens histológicas de glomérulos, e foram utilizadas técnicas clássicas de processamento de imagens e histopatologia digital. O PathoSpotter apresentou um desempenho de 88,4% de acurácia, resultado similar ao de outros trabalhos de Patologia Digital que podem ser encontrados na literatura especializada.Submitted by Ricardo Cedraz Duque Moliterno (ricardo.moliterno@uefs.br) on 2016-09-13T21:44:53Z No. of bitstreams: 1 Dissertação_George.pdf: 4996097 bytes, checksum: ece2301b72ccb1d9d33a2e2837531079 (MD5)Made available in DSpace on 2016-09-13T21:44:53Z (GMT). No. of bitstreams: 1 Dissertação_George.pdf: 4996097 bytes, checksum: ece2301b72ccb1d9d33a2e2837531079 (MD5) Previous issue date: 2016-02-29Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Estadual de Feira de SantanaMestrado em Computação AplicadaUEFSBrasilDEPARTAMENTO DE TECNOLOGIAGlomerulopatiasProcessamento digital de imagensAprendizado de máquinaHistopatologia digitalGlomerulopathyDigital image processingMachine learningDigital histopathologyCIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOPathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis3033172823111442046006006006004335108523020347051-8620782570833253013590462550136975366info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSORIGINALDissertação_George.pdfDissertação_George.pdfapplication/pdf4996097http://tede2.uefs.br:8080/bitstream/tede/389/2/Disserta%C3%A7%C3%A3o_George.pdfece2301b72ccb1d9d33a2e2837531079MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/389/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/3892016-09-13 18:44:53.521oai:tede2.uefs.br:8080:tede/389Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2016-09-13T21:44:53Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
title PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
spellingShingle PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
Barros, George Oliveira
Glomerulopatias
Processamento digital de imagens
Aprendizado de máquina
Histopatologia digital
Glomerulopathy
Digital image processing
Machine learning
Digital histopathology
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
title_full PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
title_fullStr PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
title_full_unstemmed PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
title_sort PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais
author Barros, George Oliveira
author_facet Barros, George Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv Duarte, Angelo Amâncio
dc.contributor.authorID.fl_str_mv 36526541534
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6170151743824191
dc.contributor.author.fl_str_mv Barros, George Oliveira
contributor_str_mv Duarte, Angelo Amâncio
dc.subject.por.fl_str_mv Glomerulopatias
Processamento digital de imagens
Aprendizado de máquina
Histopatologia digital
topic Glomerulopatias
Processamento digital de imagens
Aprendizado de máquina
Histopatologia digital
Glomerulopathy
Digital image processing
Machine learning
Digital histopathology
CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Glomerulopathy
Digital image processing
Machine learning
Digital histopathology
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description The realization of an accurate diagnosis from histological images requires pathologists with practical experience because the characteristics of these images lead to a subjective analysis, which often hamper the accuracy of diagnosis. Systems that help to achieve better diagnoses can minimize doubts and improve the quality of diagnosis, influencing on increasing the effectiveness of medical treatments. This paper describes the research and development of PathoSpotter, a computer system to aid in the identification of diseases from histological images. The PathoSpotter proposes to reduce the lack of support work to histopathological diagnosis of renal diseases since much has been done in the area of cancer, but there is few published material in relation to the Digital Pathology applied to nephrology and hepatology. Our goal in this study was to apply the PathoSpotter the classification of proliferative glomerulopathy, which is a family of primary diseases affecting the kidneys. The work was based on a data set consisting of 811 histological pictures glomeruli and classical techniques of processing digital images and histopathology were used. The PathoSpotter presented a performance of 88.4% accuracy, which was similar to other Digital Pathology jobs that can be found in the literature.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-13T21:44:53Z
dc.date.issued.fl_str_mv 2016-02-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BARROS, George Oliveira. PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais. 2016. 108 f. Dissertação (Mestrado em Computação Aplicada)- Universidade Estadual de Feira de Santana, Feira de Santana, 2016.
dc.identifier.uri.fl_str_mv http://localhost:8080/tede/handle/tede/389
identifier_str_mv BARROS, George Oliveira. PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais. 2016. 108 f. Dissertação (Mestrado em Computação Aplicada)- Universidade Estadual de Feira de Santana, Feira de Santana, 2016.
url http://localhost:8080/tede/handle/tede/389
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 303317282311144204
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 4335108523020347051
dc.relation.cnpq.fl_str_mv -862078257083325301
dc.relation.sponsorship.fl_str_mv 3590462550136975366
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Mestrado em Computação Aplicada
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE TECNOLOGIA
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/389/2/Disserta%C3%A7%C3%A3o_George.pdf
http://tede2.uefs.br:8080/bitstream/tede/389/1/license.txt
bitstream.checksum.fl_str_mv ece2301b72ccb1d9d33a2e2837531079
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1809288771223420928