Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro

Detalhes bibliográficos
Autor(a) principal: Guedes, Anderson Cerqueira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UEFS
Texto Completo: http://tede2.uefs.br:8080/handle/tede/1628
Resumo: The digitalization of the nancial market has led to the emergence of automated trading strategies: the trading robots. While it is possible to use just one algorithm to perform nancial operations, it has become common to create investment portfolios with several trading strategies. When performing market operations, it is possible to distribute the assets among the automated strategies in an arbitrary manner. Di erent con gurations of these distributions, however, may lead to completely distinct levels of returns. Given a set of assets, the optimal distribution problem may be studied from a multi-objective perspective, as several market indices can be used to evaluate the strategy portfolio. A set of automated trading strategies in capital markets may be combined into a portfolio, aiming to maximize returns and minimize losses. The best combination for the portfolio requires assigning optimal weights to each strategy, considering di erent indicators from nancial market. In this work, the application of evolutionary algorithms based on a lexicographical approach and based on NSGA-II are proposed to optimize a portfolio of automated strategies applied to the Brazilian futures market. The experiments study several nancial indicators, with di erent rankings, as well as optimization and time period conditions, using historical data from mini futures contracts of Ibovespa and U.S. Dollar index. Experiments were performed in order to adjust the hyperparameters (e.g. initial population, crossover rate), evaluating the impact of the chosen objective functions and the time-frame window size, as well as the accumulated capital over the period. After the objective function experiments, the group of functions that optimized the Sortino ratio had superior accumulated capital in both evolutionary algorithms. In the experiments with varying time-frame window sizes, the \Highest Return" and the \Nearest Extreme Objective Values" NSGA solutions produced the highest average returns and also the highest average accumulated capital in all scenarios. Moreover, all evaluated solutions outperformed both the IPCA and the Selic benchmarks. Short In-Sample periods managed to reduce risk and also raised the return-to-risk ratio in Out-of-Sample time-frame windows. Longer Out-of-Sample periods, however, were able to raise pro tability levels and the accumulated capital across the entire time series.
id UEFS_a2f63bdd41aa86942101447960df84e1
oai_identifier_str oai:tede2.uefs.br:8080:tede/1628
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Loula, Angelo Conradohttps://orcid.org/0000-0001-7802-1731http://lattes.cnpq.br/0704248561279452Rodrigues, Carlos Albertohttps://orcid.org/0000-0002-7663-8751Coorientador: Carlos Alberto Rodrigueshttps://orcid.org/0009-0000-2703-9691http://lattes.cnpq.br/1481639687731419Guedes, Anderson Cerqueira2024-02-23T14:04:23Z2022-11-28GUEDES, Anderson Cerqueira. Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro. 2022. 168 f. Dissertação (Mestrado em Ciência da Computação) - Departamento de Tecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, 2022.http://tede2.uefs.br:8080/handle/tede/1628The digitalization of the nancial market has led to the emergence of automated trading strategies: the trading robots. While it is possible to use just one algorithm to perform nancial operations, it has become common to create investment portfolios with several trading strategies. When performing market operations, it is possible to distribute the assets among the automated strategies in an arbitrary manner. Di erent con gurations of these distributions, however, may lead to completely distinct levels of returns. Given a set of assets, the optimal distribution problem may be studied from a multi-objective perspective, as several market indices can be used to evaluate the strategy portfolio. A set of automated trading strategies in capital markets may be combined into a portfolio, aiming to maximize returns and minimize losses. The best combination for the portfolio requires assigning optimal weights to each strategy, considering di erent indicators from nancial market. In this work, the application of evolutionary algorithms based on a lexicographical approach and based on NSGA-II are proposed to optimize a portfolio of automated strategies applied to the Brazilian futures market. The experiments study several nancial indicators, with di erent rankings, as well as optimization and time period conditions, using historical data from mini futures contracts of Ibovespa and U.S. Dollar index. Experiments were performed in order to adjust the hyperparameters (e.g. initial population, crossover rate), evaluating the impact of the chosen objective functions and the time-frame window size, as well as the accumulated capital over the period. After the objective function experiments, the group of functions that optimized the Sortino ratio had superior accumulated capital in both evolutionary algorithms. In the experiments with varying time-frame window sizes, the \Highest Return" and the \Nearest Extreme Objective Values" NSGA solutions produced the highest average returns and also the highest average accumulated capital in all scenarios. Moreover, all evaluated solutions outperformed both the IPCA and the Selic benchmarks. Short In-Sample periods managed to reduce risk and also raised the return-to-risk ratio in Out-of-Sample time-frame windows. Longer Out-of-Sample periods, however, were able to raise pro tability levels and the accumulated capital across the entire time series.A digitalização do mercado de capitais levou ao surgimento de estratégias de negociação automatizadas: os robôs investidores. Embora seja possível utilizar apenas um algoritmo para realizar operações financeiras, tornou-se comum a criação de carteiras de investimento com diversas estratégias de negociação. Ao realizar operações no mercado, e possível distribuir os ativos entre as estratégias automatizadas de maneira arbitrária. Diferentes configurações dessas distribuições, no entanto, podem levar a diferentes níveis de rentabilidades. Dado um conjunto de ativos, o problema da distribuição ótima pode ser estudado a partir de uma perspectiva multiobjetiva, pois diversos índices de mercado podem ser utilizados para avaliar a carteira de estrategias. Um conjunto de estrategias automatizadas de negociação pode ser disposto em um portfólio, buscando maximização de rendimentos e minimização de perdas. A melhor combinação para o portfólio requer a atribuição de pesos ótimos para cada estratégia, considerando diversos indicadores utilizados no mercado financeiro. Neste trabalho, é proposta a aplicação de um Algoritmo Evolutivo com abordagem lexicográfica e um Algoritmo Evolutivo baseado no NSGA-II para otimizar um portfólio de estratégias automatizadas aplicadas ao mercado futuro brasileiro. Os experimentos consideram diferentes indicadores financeiros, com diferentes ordenações, além de condições de otimização e de variações temporais, aplicando dados históricos de minicontratos do índice futuro do Ibovespa e do dólar. Experimentos foram realizados com o intuito de ajustar vários parâmetros, avaliando o impacto das funções-objetivo e do tamanho dos períodos de tempo, além do capital acumulado ao longo do período. Após os experimentos com funções-objetivo, o grupo de funções que otimizou o índice de Sórtino obteve capital acumulado superior nos dois algoritmos evolutivos. Nos experimentos com tamanhos de janelas, as soluções do NSGA de “Maior Retorno" e “Próximo ao Ideal" produziram as maiores medias de retorno e capital acumulado em todos os cenários e todas as soluções obtiveram desempenho superior ao IPCA e a Selic. Per odos In-Sample curtos reduziram o risco e elevaram a propor c~ao entre retorno e riscoem janelas Out-of-Sample. Os períodos Out-of-Sample mais extensos, no entanto, elevaram a rentabilidade e o capital acumulado em toda a série temporal.Submitted by Renata Aline Souza Silva (rassilva@uefs.br) on 2024-02-23T14:04:23Z No. of bitstreams: 1 DISSERTAÇÃO - ANDERSON CERQUEIRA GUEDES.pdf: 5504332 bytes, checksum: 23f3c95a3c6966b0b1619cebd6373f22 (MD5)Made available in DSpace on 2024-02-23T14:04:23Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO - ANDERSON CERQUEIRA GUEDES.pdf: 5504332 bytes, checksum: 23f3c95a3c6966b0b1619cebd6373f22 (MD5) Previous issue date: 2022-11-28application/pdfporUniversidade Estadual de Feira de SantanaPrograma de Pós-Graduação em Ciência da ComputaçãoUEFSBrasilDEPARTAMENTO DE TECNOLOGIAComputação evolutivaOtimização multiobjetivoAbordagem lexicográficaNSGA-IIOtimização de portfólioContratos futurosWalk forwardEvolutionary computingMulti-objective optimizationLexicographical approachNSGA-IIPortfolio optimizationFutures contractsWalk forwardCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOComputação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiroinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-457052770699435245860060060043351085230203470518930092515683771531info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSORIGINALDISSERTAÇÃO - ANDERSON CERQUEIRA GUEDES.pdfDISSERTAÇÃO - ANDERSON CERQUEIRA GUEDES.pdfapplication/pdf5504332http://tede2.uefs.br:8080/bitstream/tede/1628/2/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf23f3c95a3c6966b0b1619cebd6373f22MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/1628/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/16282024-02-23 11:04:23.896oai:tede2.uefs.br:8080:tede/1628Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2024-02-23T14:04:23Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
title Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
spellingShingle Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
Guedes, Anderson Cerqueira
Computação evolutiva
Otimização multiobjetivo
Abordagem lexicográfica
NSGA-II
Otimização de portfólio
Contratos futuros
Walk forward
Evolutionary computing
Multi-objective optimization
Lexicographical approach
NSGA-II
Portfolio optimization
Futures contracts
Walk forward
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
title_full Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
title_fullStr Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
title_full_unstemmed Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
title_sort Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro
author Guedes, Anderson Cerqueira
author_facet Guedes, Anderson Cerqueira
author_role author
dc.contributor.advisor1.fl_str_mv Loula, Angelo Conrado
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0001-7802-1731
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0704248561279452
dc.contributor.advisor-co1.fl_str_mv Rodrigues, Carlos Alberto
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0002-7663-8751
dc.contributor.advisor-co1Lattes.fl_str_mv Coorientador: Carlos Alberto Rodrigues
dc.contributor.authorID.fl_str_mv https://orcid.org/0009-0000-2703-9691
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1481639687731419
dc.contributor.author.fl_str_mv Guedes, Anderson Cerqueira
contributor_str_mv Loula, Angelo Conrado
Rodrigues, Carlos Alberto
dc.subject.por.fl_str_mv Computação evolutiva
Otimização multiobjetivo
Abordagem lexicográfica
NSGA-II
Otimização de portfólio
Contratos futuros
Walk forward
topic Computação evolutiva
Otimização multiobjetivo
Abordagem lexicográfica
NSGA-II
Otimização de portfólio
Contratos futuros
Walk forward
Evolutionary computing
Multi-objective optimization
Lexicographical approach
NSGA-II
Portfolio optimization
Futures contracts
Walk forward
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv Evolutionary computing
Multi-objective optimization
Lexicographical approach
NSGA-II
Portfolio optimization
Futures contracts
Walk forward
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description The digitalization of the nancial market has led to the emergence of automated trading strategies: the trading robots. While it is possible to use just one algorithm to perform nancial operations, it has become common to create investment portfolios with several trading strategies. When performing market operations, it is possible to distribute the assets among the automated strategies in an arbitrary manner. Di erent con gurations of these distributions, however, may lead to completely distinct levels of returns. Given a set of assets, the optimal distribution problem may be studied from a multi-objective perspective, as several market indices can be used to evaluate the strategy portfolio. A set of automated trading strategies in capital markets may be combined into a portfolio, aiming to maximize returns and minimize losses. The best combination for the portfolio requires assigning optimal weights to each strategy, considering di erent indicators from nancial market. In this work, the application of evolutionary algorithms based on a lexicographical approach and based on NSGA-II are proposed to optimize a portfolio of automated strategies applied to the Brazilian futures market. The experiments study several nancial indicators, with di erent rankings, as well as optimization and time period conditions, using historical data from mini futures contracts of Ibovespa and U.S. Dollar index. Experiments were performed in order to adjust the hyperparameters (e.g. initial population, crossover rate), evaluating the impact of the chosen objective functions and the time-frame window size, as well as the accumulated capital over the period. After the objective function experiments, the group of functions that optimized the Sortino ratio had superior accumulated capital in both evolutionary algorithms. In the experiments with varying time-frame window sizes, the \Highest Return" and the \Nearest Extreme Objective Values" NSGA solutions produced the highest average returns and also the highest average accumulated capital in all scenarios. Moreover, all evaluated solutions outperformed both the IPCA and the Selic benchmarks. Short In-Sample periods managed to reduce risk and also raised the return-to-risk ratio in Out-of-Sample time-frame windows. Longer Out-of-Sample periods, however, were able to raise pro tability levels and the accumulated capital across the entire time series.
publishDate 2022
dc.date.issued.fl_str_mv 2022-11-28
dc.date.accessioned.fl_str_mv 2024-02-23T14:04:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GUEDES, Anderson Cerqueira. Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro. 2022. 168 f. Dissertação (Mestrado em Ciência da Computação) - Departamento de Tecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, 2022.
dc.identifier.uri.fl_str_mv http://tede2.uefs.br:8080/handle/tede/1628
identifier_str_mv GUEDES, Anderson Cerqueira. Computação evolutiva para otimização de carteiras de estratégias de negociação no mercado financeiro. 2022. 168 f. Dissertação (Mestrado em Ciência da Computação) - Departamento de Tecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, 2022.
url http://tede2.uefs.br:8080/handle/tede/1628
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -4570527706994352458
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 4335108523020347051
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE TECNOLOGIA
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/1628/2/DISSERTA%C3%87%C3%83O+-+ANDERSON+CERQUEIRA+GUEDES.pdf
http://tede2.uefs.br:8080/bitstream/tede/1628/1/license.txt
bitstream.checksum.fl_str_mv 23f3c95a3c6966b0b1619cebd6373f22
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1809288786881806336