Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Semina. Ciências Agrárias (Online) |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531 |
Resumo: | Different polynomial functions were tested for mean trajectory modeling with different residual variance structures. A total of 15,148 weight records of 3,115 Nellore Mocho cattle with ages between 1 and 660 days, raised in northern Brazil. First, the mean trajectory of cattle growth curve was fitted by a fixed regression using orthogonal polynomials with orders ranging from two to seven. Analyses were performed using the least-squares method, disregarding animal and/ or maternal random effects. Then, the best model was evaluated using different residual variance structures and homogeneous and heterogeneous classes. We considered as fixed effects those of groups of contemporary and of dam age at birth (as linear and quadratic covariate). The random model part included animal and maternal effects (direct genetic and permanent environments). We concluded that the estimates of variance components and genetic parameters were affected by both fixed regression curve polynomial order and residual variance structure. Moreover, random regression model considering an order-four polynomial function with a fixed curve and six-class residual variance showed better fits. |
id |
UEL-11_0cda12ec46fc2f411a85f444f288e7a3 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/36531 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modelingAjuste da curva fixa da regressão sob estruturas de variância residual para modelagem de crescimento de bovinos NeloreMean curveGenetic parametersLinear modelsRandom regressionResidual modeling.Curva médiaModelagem residualModelos linearesParâmetros genéticosRegressão aleatória.Different polynomial functions were tested for mean trajectory modeling with different residual variance structures. A total of 15,148 weight records of 3,115 Nellore Mocho cattle with ages between 1 and 660 days, raised in northern Brazil. First, the mean trajectory of cattle growth curve was fitted by a fixed regression using orthogonal polynomials with orders ranging from two to seven. Analyses were performed using the least-squares method, disregarding animal and/ or maternal random effects. Then, the best model was evaluated using different residual variance structures and homogeneous and heterogeneous classes. We considered as fixed effects those of groups of contemporary and of dam age at birth (as linear and quadratic covariate). The random model part included animal and maternal effects (direct genetic and permanent environments). We concluded that the estimates of variance components and genetic parameters were affected by both fixed regression curve polynomial order and residual variance structure. Moreover, random regression model considering an order-four polynomial function with a fixed curve and six-class residual variance showed better fits.Diferentes funções polinomiais foram avaliadas para a modelagem da trajetória média de crescimento sob diferentes estruturas de variância residual. Utilizaram-se 15.148 registros de pesos de 3.115 bovinos da raça Nelore Mocho com idade entre 1 e 660 dias, criados na região Norte do Brasil. Inicialmente, a trajetória média da população foi ajustada por uma regressão fixa sob polinômios ortogonais da idade com ordens variando de dois a sete. Estas análises foram executadas por meio do método de quadrados mínimos ordinários, desconsiderando os efeitos aleatórios do animal e materno. Posteriormente, o melhor modelo foi avaliado sob diferentes estruturas de variância residual por meio de classes homogêneas e heterogêneas. Os efeitos fixos considerados foram os de grupos de contemporâneos e a idade da mãe ao parto (como covariável linear e quadrática). Na parte aleatória do modelo incluiu-se os efeitos do animal e materno (genéticos diretos e ambientes permanentes). Concluiu-se que as estimativas de componentes de variância e parâmetros genéticos foram afetados tanto pela ordem polinomial da curva de regressão fixa, como pela estrutura da variância residual, e o modelo de regressão aleatória que considerou uma função polinomial de ordem quatro na curva fixa e seis classes de variâncias residuais apresentou o melhor ajuste.UEL2020-03-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/3653110.5433/1679-0359.2020v41n2p545Semina: Ciências Agrárias; Vol. 41 No. 2 (2020); 545-558Semina: Ciências Agrárias; v. 41 n. 2 (2020); 545-5581679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531/26870Copyright (c) 2020 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessCavalcante, Diego HelciasSousa Júnior, Severino CavalcanteSilva, Luciano PinheiroMalhado, Carlos Henrique MendesMartins Filho, RaimundoAzevêdo, Danielle Maria Machado RibeiroCampelo, José Elivalto Guimarães2022-10-10T13:38:45Zoai:ojs.pkp.sfu.ca:article/36531Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-10T13:38:45Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling Ajuste da curva fixa da regressão sob estruturas de variância residual para modelagem de crescimento de bovinos Nelore |
title |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling |
spellingShingle |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling Cavalcante, Diego Helcias Mean curve Genetic parameters Linear models Random regression Residual modeling. Curva média Modelagem residual Modelos lineares Parâmetros genéticos Regressão aleatória. |
title_short |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling |
title_full |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling |
title_fullStr |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling |
title_full_unstemmed |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling |
title_sort |
Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling |
author |
Cavalcante, Diego Helcias |
author_facet |
Cavalcante, Diego Helcias Sousa Júnior, Severino Cavalcante Silva, Luciano Pinheiro Malhado, Carlos Henrique Mendes Martins Filho, Raimundo Azevêdo, Danielle Maria Machado Ribeiro Campelo, José Elivalto Guimarães |
author_role |
author |
author2 |
Sousa Júnior, Severino Cavalcante Silva, Luciano Pinheiro Malhado, Carlos Henrique Mendes Martins Filho, Raimundo Azevêdo, Danielle Maria Machado Ribeiro Campelo, José Elivalto Guimarães |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Cavalcante, Diego Helcias Sousa Júnior, Severino Cavalcante Silva, Luciano Pinheiro Malhado, Carlos Henrique Mendes Martins Filho, Raimundo Azevêdo, Danielle Maria Machado Ribeiro Campelo, José Elivalto Guimarães |
dc.subject.por.fl_str_mv |
Mean curve Genetic parameters Linear models Random regression Residual modeling. Curva média Modelagem residual Modelos lineares Parâmetros genéticos Regressão aleatória. |
topic |
Mean curve Genetic parameters Linear models Random regression Residual modeling. Curva média Modelagem residual Modelos lineares Parâmetros genéticos Regressão aleatória. |
description |
Different polynomial functions were tested for mean trajectory modeling with different residual variance structures. A total of 15,148 weight records of 3,115 Nellore Mocho cattle with ages between 1 and 660 days, raised in northern Brazil. First, the mean trajectory of cattle growth curve was fitted by a fixed regression using orthogonal polynomials with orders ranging from two to seven. Analyses were performed using the least-squares method, disregarding animal and/ or maternal random effects. Then, the best model was evaluated using different residual variance structures and homogeneous and heterogeneous classes. We considered as fixed effects those of groups of contemporary and of dam age at birth (as linear and quadratic covariate). The random model part included animal and maternal effects (direct genetic and permanent environments). We concluded that the estimates of variance components and genetic parameters were affected by both fixed regression curve polynomial order and residual variance structure. Moreover, random regression model considering an order-four polynomial function with a fixed curve and six-class residual variance showed better fits. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531 10.5433/1679-0359.2020v41n2p545 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531 |
identifier_str_mv |
10.5433/1679-0359.2020v41n2p545 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531/26870 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 41 No. 2 (2020); 545-558 Semina: Ciências Agrárias; v. 41 n. 2 (2020); 545-558 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1799306081556496384 |