Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling

Detalhes bibliográficos
Autor(a) principal: Cavalcante, Diego Helcias
Data de Publicação: 2020
Outros Autores: Sousa Júnior, Severino Cavalcante, Silva, Luciano Pinheiro, Malhado, Carlos Henrique Mendes, Martins Filho, Raimundo, Azevêdo, Danielle Maria Machado Ribeiro, Campelo, José Elivalto Guimarães
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531
Resumo: Different polynomial functions were tested for mean trajectory modeling with different residual variance structures. A total of 15,148 weight records of 3,115 Nellore Mocho cattle with ages between 1 and 660 days, raised in northern Brazil. First, the mean trajectory of cattle growth curve was fitted by a fixed regression using orthogonal polynomials with orders ranging from two to seven. Analyses were performed using the least-squares method, disregarding animal and/ or maternal random effects. Then, the best model was evaluated using different residual variance structures and homogeneous and heterogeneous classes. We considered as fixed effects those of groups of contemporary and of dam age at birth (as linear and quadratic covariate). The random model part included animal and maternal effects (direct genetic and permanent environments). We concluded that the estimates of variance components and genetic parameters were affected by both fixed regression curve polynomial order and residual variance structure. Moreover, random regression model considering an order-four polynomial function with a fixed curve and six-class residual variance showed better fits.
id UEL-11_0cda12ec46fc2f411a85f444f288e7a3
oai_identifier_str oai:ojs.pkp.sfu.ca:article/36531
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
repository_id_str
spelling Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modelingAjuste da curva fixa da regressão sob estruturas de variância residual para modelagem de crescimento de bovinos NeloreMean curveGenetic parametersLinear modelsRandom regressionResidual modeling.Curva médiaModelagem residualModelos linearesParâmetros genéticosRegressão aleatória.Different polynomial functions were tested for mean trajectory modeling with different residual variance structures. A total of 15,148 weight records of 3,115 Nellore Mocho cattle with ages between 1 and 660 days, raised in northern Brazil. First, the mean trajectory of cattle growth curve was fitted by a fixed regression using orthogonal polynomials with orders ranging from two to seven. Analyses were performed using the least-squares method, disregarding animal and/ or maternal random effects. Then, the best model was evaluated using different residual variance structures and homogeneous and heterogeneous classes. We considered as fixed effects those of groups of contemporary and of dam age at birth (as linear and quadratic covariate). The random model part included animal and maternal effects (direct genetic and permanent environments). We concluded that the estimates of variance components and genetic parameters were affected by both fixed regression curve polynomial order and residual variance structure. Moreover, random regression model considering an order-four polynomial function with a fixed curve and six-class residual variance showed better fits.Diferentes funções polinomiais foram avaliadas para a modelagem da trajetória média de crescimento sob diferentes estruturas de variância residual. Utilizaram-se 15.148 registros de pesos de 3.115 bovinos da raça Nelore Mocho com idade entre 1 e 660 dias, criados na região Norte do Brasil. Inicialmente, a trajetória média da população foi ajustada por uma regressão fixa sob polinômios ortogonais da idade com ordens variando de dois a sete. Estas análises foram executadas por meio do método de quadrados mínimos ordinários, desconsiderando os efeitos aleatórios do animal e materno. Posteriormente, o melhor modelo foi avaliado sob diferentes estruturas de variância residual por meio de classes homogêneas e heterogêneas. Os efeitos fixos considerados foram os de grupos de contemporâneos e a idade da mãe ao parto (como covariável linear e quadrática). Na parte aleatória do modelo incluiu-se os efeitos do animal e materno (genéticos diretos e ambientes permanentes). Concluiu-se que as estimativas de componentes de variância e parâmetros genéticos foram afetados tanto pela ordem polinomial da curva de regressão fixa, como pela estrutura da variância residual, e o modelo de regressão aleatória que considerou uma função polinomial de ordem quatro na curva fixa e seis classes de variâncias residuais apresentou o melhor ajuste.UEL2020-03-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/3653110.5433/1679-0359.2020v41n2p545Semina: Ciências Agrárias; Vol. 41 No. 2 (2020); 545-558Semina: Ciências Agrárias; v. 41 n. 2 (2020); 545-5581679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531/26870Copyright (c) 2020 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessCavalcante, Diego HelciasSousa Júnior, Severino CavalcanteSilva, Luciano PinheiroMalhado, Carlos Henrique MendesMartins Filho, RaimundoAzevêdo, Danielle Maria Machado RibeiroCampelo, José Elivalto Guimarães2022-10-10T13:38:45Zoai:ojs.pkp.sfu.ca:article/36531Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-10T13:38:45Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
Ajuste da curva fixa da regressão sob estruturas de variância residual para modelagem de crescimento de bovinos Nelore
title Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
spellingShingle Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
Cavalcante, Diego Helcias
Mean curve
Genetic parameters
Linear models
Random regression
Residual modeling.
Curva média
Modelagem residual
Modelos lineares
Parâmetros genéticos
Regressão aleatória.
title_short Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
title_full Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
title_fullStr Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
title_full_unstemmed Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
title_sort Fitting of fixed regression curves with different residual variance structures for Nellore cattle growth modeling
author Cavalcante, Diego Helcias
author_facet Cavalcante, Diego Helcias
Sousa Júnior, Severino Cavalcante
Silva, Luciano Pinheiro
Malhado, Carlos Henrique Mendes
Martins Filho, Raimundo
Azevêdo, Danielle Maria Machado Ribeiro
Campelo, José Elivalto Guimarães
author_role author
author2 Sousa Júnior, Severino Cavalcante
Silva, Luciano Pinheiro
Malhado, Carlos Henrique Mendes
Martins Filho, Raimundo
Azevêdo, Danielle Maria Machado Ribeiro
Campelo, José Elivalto Guimarães
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Cavalcante, Diego Helcias
Sousa Júnior, Severino Cavalcante
Silva, Luciano Pinheiro
Malhado, Carlos Henrique Mendes
Martins Filho, Raimundo
Azevêdo, Danielle Maria Machado Ribeiro
Campelo, José Elivalto Guimarães
dc.subject.por.fl_str_mv Mean curve
Genetic parameters
Linear models
Random regression
Residual modeling.
Curva média
Modelagem residual
Modelos lineares
Parâmetros genéticos
Regressão aleatória.
topic Mean curve
Genetic parameters
Linear models
Random regression
Residual modeling.
Curva média
Modelagem residual
Modelos lineares
Parâmetros genéticos
Regressão aleatória.
description Different polynomial functions were tested for mean trajectory modeling with different residual variance structures. A total of 15,148 weight records of 3,115 Nellore Mocho cattle with ages between 1 and 660 days, raised in northern Brazil. First, the mean trajectory of cattle growth curve was fitted by a fixed regression using orthogonal polynomials with orders ranging from two to seven. Analyses were performed using the least-squares method, disregarding animal and/ or maternal random effects. Then, the best model was evaluated using different residual variance structures and homogeneous and heterogeneous classes. We considered as fixed effects those of groups of contemporary and of dam age at birth (as linear and quadratic covariate). The random model part included animal and maternal effects (direct genetic and permanent environments). We concluded that the estimates of variance components and genetic parameters were affected by both fixed regression curve polynomial order and residual variance structure. Moreover, random regression model considering an order-four polynomial function with a fixed curve and six-class residual variance showed better fits.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-06
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531
10.5433/1679-0359.2020v41n2p545
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531
identifier_str_mv 10.5433/1679-0359.2020v41n2p545
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/36531/26870
dc.rights.driver.fl_str_mv Copyright (c) 2020 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 41 No. 2 (2020); 545-558
Semina: Ciências Agrárias; v. 41 n. 2 (2020); 545-558
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1799306081556496384