Linear and spatial correlation of the yield components and soybean yield
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Semina. Ciências Agrárias (Online) |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/6441 |
Resumo: | The soybean is the crop most cultivated in Brazil, with great socioeconomic importance. In the agriculture year 2008/09 in Selvíria County, Mato Grosso do Sul State, in the Brazilian Savannah, was analyzed the production components and the soybean yield cultivated in a Typic Acrustox on no-tillage. The main purpose objective was select among the production components number of pods per plant, number of grains per pod, number of grains per plant, mass of a thousand grains, mass of grains per plant and population of plants, which of the best linear and spatial correlation aiming explain the soybean yield variability. The irregular geostatistical grid was installed to collect of data, with 120 sampling points, in an area of 8.34 ha. The values of spatial dependence range to be utilized should be among 38.1 and 114.7 meters. The model of the adjusted semivariograma was predominantly the spherical. Of the lineal and spatial point of view, the number of pods per plant and the mass of grains per plant they were correlated in a direct way with the soybean yield, demonstrating be the best components to esteem her. |
id |
UEL-11_2133de77f7efd772660a39faeb6c8629 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/6441 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Linear and spatial correlation of the yield components and soybean yieldCorrelação linear e espacial dos componentes de produção e produtividade da sojaPrecision agricultureGeoestatisticsGlycine maxSpatial variability.Agricultura de precisãoGeoestatísticaGlycine MaxVariabilidade espacial. The soybean is the crop most cultivated in Brazil, with great socioeconomic importance. In the agriculture year 2008/09 in Selvíria County, Mato Grosso do Sul State, in the Brazilian Savannah, was analyzed the production components and the soybean yield cultivated in a Typic Acrustox on no-tillage. The main purpose objective was select among the production components number of pods per plant, number of grains per pod, number of grains per plant, mass of a thousand grains, mass of grains per plant and population of plants, which of the best linear and spatial correlation aiming explain the soybean yield variability. The irregular geostatistical grid was installed to collect of data, with 120 sampling points, in an area of 8.34 ha. The values of spatial dependence range to be utilized should be among 38.1 and 114.7 meters. The model of the adjusted semivariograma was predominantly the spherical. Of the lineal and spatial point of view, the number of pods per plant and the mass of grains per plant they were correlated in a direct way with the soybean yield, demonstrating be the best components to esteem her.A soja é a cultura de grãos mais cultivada no Brasil, com enorme importância socioeconômica. No ano agrícola de 2008/09, no município de Selvíria (MS), no Cerrado Brasileiro, foram analisados os componentes de produção e a produtividade da soja cultivada em Latossolo Vermelho distroférrico em sistema plantio direto. O objetivo foi selecionar entre os componentes de produção número de vagens por planta, número de grãos por vagem, número de grãos por planta, massa de mil grãos, massa de grãos por planta e população de plantas, aquele com a melhor correlação, linear e espacial, visando explicar a variabilidade da produtividade da soja. Foi instalada a malha geoestatística irregular, para a coleta de dados, com 120 pontos amostrais, numa área de 8,34 ha. Os valores dos alcances da dependência espacial a serem empregados deverão estar compreendidos entre 38,1 e 114,7 metros. O modelo dos semivariogramas ajustados foi predominantemente o esférico. Do ponto de vista linear e espacial, o número de vagens por planta e a massa de grãos por planta correlacionaram-se de forma direta com a produtividade da soja, demonstrando serem os melhores componentes para estimá-la.UEL2012-05-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/644110.5433/1679-0359.2012v33n2p541Semina: Ciências Agrárias; Vol. 33 No. 2 (2012); 541-552Semina: Ciências Agrárias; v. 33 n. 2 (2012); 541-5521679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELporhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/6441/10471Copyright (c) 2012 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessDalchiavon, Flávio CarlosCarvalho, Morel de Passos e2023-01-27T15:14:39Zoai:ojs.pkp.sfu.ca:article/6441Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2023-01-27T15:14:39Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Linear and spatial correlation of the yield components and soybean yield Correlação linear e espacial dos componentes de produção e produtividade da soja |
title |
Linear and spatial correlation of the yield components and soybean yield |
spellingShingle |
Linear and spatial correlation of the yield components and soybean yield Dalchiavon, Flávio Carlos Precision agriculture Geoestatistics Glycine max Spatial variability. Agricultura de precisão Geoestatística Glycine Max Variabilidade espacial. |
title_short |
Linear and spatial correlation of the yield components and soybean yield |
title_full |
Linear and spatial correlation of the yield components and soybean yield |
title_fullStr |
Linear and spatial correlation of the yield components and soybean yield |
title_full_unstemmed |
Linear and spatial correlation of the yield components and soybean yield |
title_sort |
Linear and spatial correlation of the yield components and soybean yield |
author |
Dalchiavon, Flávio Carlos |
author_facet |
Dalchiavon, Flávio Carlos Carvalho, Morel de Passos e |
author_role |
author |
author2 |
Carvalho, Morel de Passos e |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Dalchiavon, Flávio Carlos Carvalho, Morel de Passos e |
dc.subject.por.fl_str_mv |
Precision agriculture Geoestatistics Glycine max Spatial variability. Agricultura de precisão Geoestatística Glycine Max Variabilidade espacial. |
topic |
Precision agriculture Geoestatistics Glycine max Spatial variability. Agricultura de precisão Geoestatística Glycine Max Variabilidade espacial. |
description |
The soybean is the crop most cultivated in Brazil, with great socioeconomic importance. In the agriculture year 2008/09 in Selvíria County, Mato Grosso do Sul State, in the Brazilian Savannah, was analyzed the production components and the soybean yield cultivated in a Typic Acrustox on no-tillage. The main purpose objective was select among the production components number of pods per plant, number of grains per pod, number of grains per plant, mass of a thousand grains, mass of grains per plant and population of plants, which of the best linear and spatial correlation aiming explain the soybean yield variability. The irregular geostatistical grid was installed to collect of data, with 120 sampling points, in an area of 8.34 ha. The values of spatial dependence range to be utilized should be among 38.1 and 114.7 meters. The model of the adjusted semivariograma was predominantly the spherical. Of the lineal and spatial point of view, the number of pods per plant and the mass of grains per plant they were correlated in a direct way with the soybean yield, demonstrating be the best components to esteem her. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/6441 10.5433/1679-0359.2012v33n2p541 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/6441 |
identifier_str_mv |
10.5433/1679-0359.2012v33n2p541 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/6441/10471 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2012 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2012 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 33 No. 2 (2012); 541-552 Semina: Ciências Agrárias; v. 33 n. 2 (2012); 541-552 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1799306063756918784 |