Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr

Detalhes bibliográficos
Autor(a) principal: Igarashi, Wagner Teigi
Data de Publicação: 2016
Outros Autores: França, José Alexandre de, Silva, Marcelo Augusto de Aguiar e, Igarashi, Seiji, Abi Saab, Otávio Jorge Grigoli
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626
Resumo: Predictive models of Asian soybean rust have been described by researchers to estimate favorable responses to epidemics. The prediction strategies are based on weather data obtained during period when initial symptoms of the disease are observed. Therefore, this study will evaluate the application of two prediction models of Asian soybean rust, and compare the results from two harvest seasons. The experiments were carried out during the 2011/2012 and 2012/2013 seasons in Londrina, PR. “SIGA spore traps” were installed to monitor the presence of Phakopsora pachyrhizi uredospores, and “Electronic trees,” to collect data on weather variables. Following the detection of the first urediniospores, incidence and disease severity were assessed and compared with the predictions made by the models. The model described by Reis et al. (2004) did not indicate conditions favorable for the development of the first rust lesions following the detection of the first urediniospores during the 2011/2012 season. The premonitory symptoms of rust in the first and second harvest seasons were observed only when the model of Reis et al. (2004) indicated SDVPI close to 15 units. The model of Del Ponte et al. (2006b) overestimated the final rust severity during the two seasons.
id UEL-11_2912e35a27534650a20f165f65dcb962
oai_identifier_str oai:ojs.pkp.sfu.ca:article/21626
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
repository_id_str
spelling Application of prediction models of asian soybean rust in two crop seasons, in Londrina, PrAplicação de modelos de previsão da ferrugem asiática da soja em duas safras agrícolas, em Londrina, PrDisease simulation modelsElectronic trees for wetnessPhakopsora pachyrhiziSIGA spore trap.Árvores Eletrônicas de MolhamentoColetor de esporos SIGAModelos de simulação de epidemiasPhakopsora pachyrhizi.Predictive models of Asian soybean rust have been described by researchers to estimate favorable responses to epidemics. The prediction strategies are based on weather data obtained during period when initial symptoms of the disease are observed. Therefore, this study will evaluate the application of two prediction models of Asian soybean rust, and compare the results from two harvest seasons. The experiments were carried out during the 2011/2012 and 2012/2013 seasons in Londrina, PR. “SIGA spore traps” were installed to monitor the presence of Phakopsora pachyrhizi uredospores, and “Electronic trees,” to collect data on weather variables. Following the detection of the first urediniospores, incidence and disease severity were assessed and compared with the predictions made by the models. The model described by Reis et al. (2004) did not indicate conditions favorable for the development of the first rust lesions following the detection of the first urediniospores during the 2011/2012 season. The premonitory symptoms of rust in the first and second harvest seasons were observed only when the model of Reis et al. (2004) indicated SDVPI close to 15 units. The model of Del Ponte et al. (2006b) overestimated the final rust severity during the two seasons.Modelos de previsão da ferrugem asiática da soja foram descritos por pesquisadores para estimar a favorabilidade climática para a ocorrência de epidemias. As estratégias de previsão estão fundamentadas em dados meteorológicos, a partir dos sintomas iniciais da doença. Portanto, objetivou-se aplicar dois modelos de previsão da ferrugem asiática da soja, e comparar com os resultados de duas safras agrícolas. A condução dos experimentos ocorreu nas safras 2011/2012 e 2012/2013 no município de Londrina, PR. Foram instalados “Coletores de esporos SIGA” para monitorar a presença de uredósporos de P. pachyrhizi, e “Árvores Eletrônicas de Molhamento” para coletar dados das variáveis meteorológicas. A partir da detecção dos primeiros uredósporos foram realizadas avaliações da incidência e da severidade da ferrugem, para comparar com as previsões feitas pelos modelos. O modelo de Reis et al. (2004) não indicou condições para o desenvolvimento das primeiras lesões da ferrugem após a chegada dos primeiros uredósporos na safra 2011/2012. Os primeiros sintomas da ferrugem na primeira e na segunda safra foram constatados apenas quando o modelo de Reis et al. (2004) indicou SVDPI próximo a 15 unidades. O modelo de Del Ponte et al. (2006b) superestimou a severidade final da ferrugem-asiática nas duas safras.UEL2016-10-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa Empírica de Campoapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/2162610.5433/1679-0359.2016v37n5p2881Semina: Ciências Agrárias; Vol. 37 No. 5 (2016); 2881-2890Semina: Ciências Agrárias; v. 37 n. 5 (2016); 2881-28901679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626/19742http://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessIgarashi, Wagner TeigiFrança, José Alexandre deSilva, Marcelo Augusto de Aguiar eIgarashi, SeijiAbi Saab, Otávio Jorge Grigoli2022-11-30T13:11:56Zoai:ojs.pkp.sfu.ca:article/21626Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-11-30T13:11:56Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
Aplicação de modelos de previsão da ferrugem asiática da soja em duas safras agrícolas, em Londrina, Pr
title Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
spellingShingle Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
Igarashi, Wagner Teigi
Disease simulation models
Electronic trees for wetness
Phakopsora pachyrhizi
SIGA spore trap.
Árvores Eletrônicas de Molhamento
Coletor de esporos SIGA
Modelos de simulação de epidemias
Phakopsora pachyrhizi.
title_short Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
title_full Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
title_fullStr Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
title_full_unstemmed Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
title_sort Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
author Igarashi, Wagner Teigi
author_facet Igarashi, Wagner Teigi
França, José Alexandre de
Silva, Marcelo Augusto de Aguiar e
Igarashi, Seiji
Abi Saab, Otávio Jorge Grigoli
author_role author
author2 França, José Alexandre de
Silva, Marcelo Augusto de Aguiar e
Igarashi, Seiji
Abi Saab, Otávio Jorge Grigoli
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Igarashi, Wagner Teigi
França, José Alexandre de
Silva, Marcelo Augusto de Aguiar e
Igarashi, Seiji
Abi Saab, Otávio Jorge Grigoli
dc.subject.por.fl_str_mv Disease simulation models
Electronic trees for wetness
Phakopsora pachyrhizi
SIGA spore trap.
Árvores Eletrônicas de Molhamento
Coletor de esporos SIGA
Modelos de simulação de epidemias
Phakopsora pachyrhizi.
topic Disease simulation models
Electronic trees for wetness
Phakopsora pachyrhizi
SIGA spore trap.
Árvores Eletrônicas de Molhamento
Coletor de esporos SIGA
Modelos de simulação de epidemias
Phakopsora pachyrhizi.
description Predictive models of Asian soybean rust have been described by researchers to estimate favorable responses to epidemics. The prediction strategies are based on weather data obtained during period when initial symptoms of the disease are observed. Therefore, this study will evaluate the application of two prediction models of Asian soybean rust, and compare the results from two harvest seasons. The experiments were carried out during the 2011/2012 and 2012/2013 seasons in Londrina, PR. “SIGA spore traps” were installed to monitor the presence of Phakopsora pachyrhizi uredospores, and “Electronic trees,” to collect data on weather variables. Following the detection of the first urediniospores, incidence and disease severity were assessed and compared with the predictions made by the models. The model described by Reis et al. (2004) did not indicate conditions favorable for the development of the first rust lesions following the detection of the first urediniospores during the 2011/2012 season. The premonitory symptoms of rust in the first and second harvest seasons were observed only when the model of Reis et al. (2004) indicated SDVPI close to 15 units. The model of Del Ponte et al. (2006b) overestimated the final rust severity during the two seasons.
publishDate 2016
dc.date.none.fl_str_mv 2016-10-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Pesquisa Empírica de Campo
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626
10.5433/1679-0359.2016v37n5p2881
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626
identifier_str_mv 10.5433/1679-0359.2016v37n5p2881
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626/19742
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 37 No. 5 (2016); 2881-2890
Semina: Ciências Agrárias; v. 37 n. 5 (2016); 2881-2890
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1799306073964806144