Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Semina. Ciências Agrárias (Online) |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626 |
Resumo: | Predictive models of Asian soybean rust have been described by researchers to estimate favorable responses to epidemics. The prediction strategies are based on weather data obtained during period when initial symptoms of the disease are observed. Therefore, this study will evaluate the application of two prediction models of Asian soybean rust, and compare the results from two harvest seasons. The experiments were carried out during the 2011/2012 and 2012/2013 seasons in Londrina, PR. “SIGA spore traps” were installed to monitor the presence of Phakopsora pachyrhizi uredospores, and “Electronic trees,” to collect data on weather variables. Following the detection of the first urediniospores, incidence and disease severity were assessed and compared with the predictions made by the models. The model described by Reis et al. (2004) did not indicate conditions favorable for the development of the first rust lesions following the detection of the first urediniospores during the 2011/2012 season. The premonitory symptoms of rust in the first and second harvest seasons were observed only when the model of Reis et al. (2004) indicated SDVPI close to 15 units. The model of Del Ponte et al. (2006b) overestimated the final rust severity during the two seasons. |
id |
UEL-11_2912e35a27534650a20f165f65dcb962 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/21626 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, PrAplicação de modelos de previsão da ferrugem asiática da soja em duas safras agrícolas, em Londrina, PrDisease simulation modelsElectronic trees for wetnessPhakopsora pachyrhiziSIGA spore trap.Árvores Eletrônicas de MolhamentoColetor de esporos SIGAModelos de simulação de epidemiasPhakopsora pachyrhizi.Predictive models of Asian soybean rust have been described by researchers to estimate favorable responses to epidemics. The prediction strategies are based on weather data obtained during period when initial symptoms of the disease are observed. Therefore, this study will evaluate the application of two prediction models of Asian soybean rust, and compare the results from two harvest seasons. The experiments were carried out during the 2011/2012 and 2012/2013 seasons in Londrina, PR. “SIGA spore traps” were installed to monitor the presence of Phakopsora pachyrhizi uredospores, and “Electronic trees,” to collect data on weather variables. Following the detection of the first urediniospores, incidence and disease severity were assessed and compared with the predictions made by the models. The model described by Reis et al. (2004) did not indicate conditions favorable for the development of the first rust lesions following the detection of the first urediniospores during the 2011/2012 season. The premonitory symptoms of rust in the first and second harvest seasons were observed only when the model of Reis et al. (2004) indicated SDVPI close to 15 units. The model of Del Ponte et al. (2006b) overestimated the final rust severity during the two seasons.Modelos de previsão da ferrugem asiática da soja foram descritos por pesquisadores para estimar a favorabilidade climática para a ocorrência de epidemias. As estratégias de previsão estão fundamentadas em dados meteorológicos, a partir dos sintomas iniciais da doença. Portanto, objetivou-se aplicar dois modelos de previsão da ferrugem asiática da soja, e comparar com os resultados de duas safras agrícolas. A condução dos experimentos ocorreu nas safras 2011/2012 e 2012/2013 no município de Londrina, PR. Foram instalados “Coletores de esporos SIGA” para monitorar a presença de uredósporos de P. pachyrhizi, e “Árvores Eletrônicas de Molhamento” para coletar dados das variáveis meteorológicas. A partir da detecção dos primeiros uredósporos foram realizadas avaliações da incidência e da severidade da ferrugem, para comparar com as previsões feitas pelos modelos. O modelo de Reis et al. (2004) não indicou condições para o desenvolvimento das primeiras lesões da ferrugem após a chegada dos primeiros uredósporos na safra 2011/2012. Os primeiros sintomas da ferrugem na primeira e na segunda safra foram constatados apenas quando o modelo de Reis et al. (2004) indicou SVDPI próximo a 15 unidades. O modelo de Del Ponte et al. (2006b) superestimou a severidade final da ferrugem-asiática nas duas safras.UEL2016-10-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa Empírica de Campoapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/2162610.5433/1679-0359.2016v37n5p2881Semina: Ciências Agrárias; Vol. 37 No. 5 (2016); 2881-2890Semina: Ciências Agrárias; v. 37 n. 5 (2016); 2881-28901679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626/19742http://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessIgarashi, Wagner TeigiFrança, José Alexandre deSilva, Marcelo Augusto de Aguiar eIgarashi, SeijiAbi Saab, Otávio Jorge Grigoli2022-11-30T13:11:56Zoai:ojs.pkp.sfu.ca:article/21626Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-11-30T13:11:56Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr Aplicação de modelos de previsão da ferrugem asiática da soja em duas safras agrícolas, em Londrina, Pr |
title |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr |
spellingShingle |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr Igarashi, Wagner Teigi Disease simulation models Electronic trees for wetness Phakopsora pachyrhizi SIGA spore trap. Árvores Eletrônicas de Molhamento Coletor de esporos SIGA Modelos de simulação de epidemias Phakopsora pachyrhizi. |
title_short |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr |
title_full |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr |
title_fullStr |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr |
title_full_unstemmed |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr |
title_sort |
Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr |
author |
Igarashi, Wagner Teigi |
author_facet |
Igarashi, Wagner Teigi França, José Alexandre de Silva, Marcelo Augusto de Aguiar e Igarashi, Seiji Abi Saab, Otávio Jorge Grigoli |
author_role |
author |
author2 |
França, José Alexandre de Silva, Marcelo Augusto de Aguiar e Igarashi, Seiji Abi Saab, Otávio Jorge Grigoli |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Igarashi, Wagner Teigi França, José Alexandre de Silva, Marcelo Augusto de Aguiar e Igarashi, Seiji Abi Saab, Otávio Jorge Grigoli |
dc.subject.por.fl_str_mv |
Disease simulation models Electronic trees for wetness Phakopsora pachyrhizi SIGA spore trap. Árvores Eletrônicas de Molhamento Coletor de esporos SIGA Modelos de simulação de epidemias Phakopsora pachyrhizi. |
topic |
Disease simulation models Electronic trees for wetness Phakopsora pachyrhizi SIGA spore trap. Árvores Eletrônicas de Molhamento Coletor de esporos SIGA Modelos de simulação de epidemias Phakopsora pachyrhizi. |
description |
Predictive models of Asian soybean rust have been described by researchers to estimate favorable responses to epidemics. The prediction strategies are based on weather data obtained during period when initial symptoms of the disease are observed. Therefore, this study will evaluate the application of two prediction models of Asian soybean rust, and compare the results from two harvest seasons. The experiments were carried out during the 2011/2012 and 2012/2013 seasons in Londrina, PR. “SIGA spore traps” were installed to monitor the presence of Phakopsora pachyrhizi uredospores, and “Electronic trees,” to collect data on weather variables. Following the detection of the first urediniospores, incidence and disease severity were assessed and compared with the predictions made by the models. The model described by Reis et al. (2004) did not indicate conditions favorable for the development of the first rust lesions following the detection of the first urediniospores during the 2011/2012 season. The premonitory symptoms of rust in the first and second harvest seasons were observed only when the model of Reis et al. (2004) indicated SDVPI close to 15 units. The model of Del Ponte et al. (2006b) overestimated the final rust severity during the two seasons. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Pesquisa Empírica de Campo |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626 10.5433/1679-0359.2016v37n5p2881 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626 |
identifier_str_mv |
10.5433/1679-0359.2016v37n5p2881 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/21626/19742 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 37 No. 5 (2016); 2881-2890 Semina: Ciências Agrárias; v. 37 n. 5 (2016); 2881-2890 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1799306073964806144 |