Growth curves and genetic parameters in Nelore animals estimated by random regression models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Semina. Ciências Agrárias (Online) |
DOI: | 10.5433/1679-0359.2019v40n2p935 |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33658 |
Resumo: | The objective of this work was to estimate growth curves and genetic parameters from birth to 650 days of age of Nelore cattle raised in pasture in two production regions of the Mato Grosso do Sul State, Brazil (233,835 weight records from 47,459 cattle were analyzed). Genetic parameters were determined by random regression using Legendre orthogonal polynomials of cubic order, and age at weighing was considered in the model as a fixed effect to model the average growth trajectory. In the models, the effects of the contemporary group were considered as fixed and, as covariates, the animal age at weighing and the cow age at calving were nested in the animal age class (linear and quadratic effects), forming eight age classes. All models included the direct genetic additive, maternal genetic, and animal permanent environment as random effects, and the most appropriate model to describe the studied effects was defined according to the AIC and BIC criteria. Heritability estimates for birth weight varied between the two production regions, Campo Grande-Dourados (R1) and Alto Taquari-Bolsão (R2) and R1 (0.36 ± 0.02) and R2 (0.28 ± 0.03), and there were variations in the estimates at advanced ages. In both regions, the highest heritability values at 650 days of age were 0.47 ± 0.03 and 0.65 ± 0.02 for R1 and R2, respectively, with high heritability reflecting the high values of additive genetic variance. The random regression methodology was efficient in estimating growth curves and genetic parameters. Growth curves were different when they were estimated separately by sex, birth season, and production region. Genetic parameters estimated separately by region indicate differences in additive genetic variance, maternal additive, and animal permanent environment for weights up to 650 days of age. |
id |
UEL-11_2c1f57762e829220aa6550c759e1ed95 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/33658 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
spelling |
Growth curves and genetic parameters in Nelore animals estimated by random regression modelsCurvas de crescimento e parâmetros genéticos em animais da raça Nelore estimados por modelos de regressão aleatóriaHeritabilityLegendre polynomialsResidual variances classes.Classes de variâncias residuaisHerdabilidadePolinômios de Legendre.The objective of this work was to estimate growth curves and genetic parameters from birth to 650 days of age of Nelore cattle raised in pasture in two production regions of the Mato Grosso do Sul State, Brazil (233,835 weight records from 47,459 cattle were analyzed). Genetic parameters were determined by random regression using Legendre orthogonal polynomials of cubic order, and age at weighing was considered in the model as a fixed effect to model the average growth trajectory. In the models, the effects of the contemporary group were considered as fixed and, as covariates, the animal age at weighing and the cow age at calving were nested in the animal age class (linear and quadratic effects), forming eight age classes. All models included the direct genetic additive, maternal genetic, and animal permanent environment as random effects, and the most appropriate model to describe the studied effects was defined according to the AIC and BIC criteria. Heritability estimates for birth weight varied between the two production regions, Campo Grande-Dourados (R1) and Alto Taquari-Bolsão (R2) and R1 (0.36 ± 0.02) and R2 (0.28 ± 0.03), and there were variations in the estimates at advanced ages. In both regions, the highest heritability values at 650 days of age were 0.47 ± 0.03 and 0.65 ± 0.02 for R1 and R2, respectively, with high heritability reflecting the high values of additive genetic variance. The random regression methodology was efficient in estimating growth curves and genetic parameters. Growth curves were different when they were estimated separately by sex, birth season, and production region. Genetic parameters estimated separately by region indicate differences in additive genetic variance, maternal additive, and animal permanent environment for weights up to 650 days of age.O objetivo do trabalho foi estimar curvas de crescimento e parâmetros genéticos, do nascimento aos 650 dias de idade de bovinos da raça Nelore criados a pasto em duas regiões de produção do estado de Mato Grosso do Sul, Brasil (Foram analisados 233 registros de peso provenientes de 47.459 animais). Os parâmetros genéticos foram determinados por meio de regressão aleatória, utilizando polinômios ortogonais de Legendre de ordem cúbica, a idade a pesagem foi considerada no modelo como efeito fixo para modelar a trajetória média de crescimento. Nos modelos, os efeitos de grupo de contemporâneos foram considerados como fixos e, como covariáveis, a idade do animal (efeitos linear e quadrático), sendo construídas oito classes etárias. Todos os modelos incluíram os efeitos genético aditivo direto, genético materno e de ambiente permanente direto como aleatórios, e o modelo mais apropriado para descrever os efeitos estudados foi definido de acordo com os critérios AIC e BIC.As estimativas de herdabilidade para peso ao nascimento foram diferentes nas duas regiões produtoras, Campo Grande-Dourados (R1), e Alto Taquari-Bolsão (R2), R1 (0,36 ± 0,02) e R2 (0,28 ± 0,03), e para as idades avançadas ocorreram variações nas estimativas. Em ambas as regiões, os maiores valores de herdabilidade foram aos 650 dias de idade, 0,47 ± 0,03 e 0,65 ± 0,02, respectivamente para R1 e R2, sendo a alta herdabilidade reflexo dos altos valores de variância genética aditiva. A metodologia de regressão aleatória mostrou-se eficiente em estimar curvas de crescimento e parâmetros genéticos. As curvas de crescimento mostraram-se diferentes quando estimadas separadamente por sexo, estação de nascimento e região de produção. Os parâmetros genéticos estimados separadamente por região, indicam diferenças nas variâncias genética aditiva, aditiva materna e de ambiente permanente do animal para pesos até os 650 dias de idade.UEL2019-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa Empírica de CampoPesquisa Empírica de Campoapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/3365810.5433/1679-0359.2019v40n2p935Semina: Ciências Agrárias; Vol. 40 No. 2 (2019); 935-946Semina: Ciências Agrárias; v. 40 n. 2 (2019); 935-9461679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33658/25276Copyright (c) 2019 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSilveira, Maurício Vargas daSouza, Júlio César deBertipaglia, Tássia SouzaFerraz Filho, Paulo BahiensePereira, Mariana AlencarMachado, Carlos Henrique Cavallari2022-10-19T14:43:06Zoai:ojs.pkp.sfu.ca:article/33658Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-19T14:43:06Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Growth curves and genetic parameters in Nelore animals estimated by random regression models Curvas de crescimento e parâmetros genéticos em animais da raça Nelore estimados por modelos de regressão aleatória |
title |
Growth curves and genetic parameters in Nelore animals estimated by random regression models |
spellingShingle |
Growth curves and genetic parameters in Nelore animals estimated by random regression models Growth curves and genetic parameters in Nelore animals estimated by random regression models Silveira, Maurício Vargas da Heritability Legendre polynomials Residual variances classes. Classes de variâncias residuais Herdabilidade Polinômios de Legendre. Silveira, Maurício Vargas da Heritability Legendre polynomials Residual variances classes. Classes de variâncias residuais Herdabilidade Polinômios de Legendre. |
title_short |
Growth curves and genetic parameters in Nelore animals estimated by random regression models |
title_full |
Growth curves and genetic parameters in Nelore animals estimated by random regression models |
title_fullStr |
Growth curves and genetic parameters in Nelore animals estimated by random regression models Growth curves and genetic parameters in Nelore animals estimated by random regression models |
title_full_unstemmed |
Growth curves and genetic parameters in Nelore animals estimated by random regression models Growth curves and genetic parameters in Nelore animals estimated by random regression models |
title_sort |
Growth curves and genetic parameters in Nelore animals estimated by random regression models |
author |
Silveira, Maurício Vargas da |
author_facet |
Silveira, Maurício Vargas da Silveira, Maurício Vargas da Souza, Júlio César de Bertipaglia, Tássia Souza Ferraz Filho, Paulo Bahiense Pereira, Mariana Alencar Machado, Carlos Henrique Cavallari Souza, Júlio César de Bertipaglia, Tássia Souza Ferraz Filho, Paulo Bahiense Pereira, Mariana Alencar Machado, Carlos Henrique Cavallari |
author_role |
author |
author2 |
Souza, Júlio César de Bertipaglia, Tássia Souza Ferraz Filho, Paulo Bahiense Pereira, Mariana Alencar Machado, Carlos Henrique Cavallari |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Silveira, Maurício Vargas da Souza, Júlio César de Bertipaglia, Tássia Souza Ferraz Filho, Paulo Bahiense Pereira, Mariana Alencar Machado, Carlos Henrique Cavallari |
dc.subject.por.fl_str_mv |
Heritability Legendre polynomials Residual variances classes. Classes de variâncias residuais Herdabilidade Polinômios de Legendre. |
topic |
Heritability Legendre polynomials Residual variances classes. Classes de variâncias residuais Herdabilidade Polinômios de Legendre. |
description |
The objective of this work was to estimate growth curves and genetic parameters from birth to 650 days of age of Nelore cattle raised in pasture in two production regions of the Mato Grosso do Sul State, Brazil (233,835 weight records from 47,459 cattle were analyzed). Genetic parameters were determined by random regression using Legendre orthogonal polynomials of cubic order, and age at weighing was considered in the model as a fixed effect to model the average growth trajectory. In the models, the effects of the contemporary group were considered as fixed and, as covariates, the animal age at weighing and the cow age at calving were nested in the animal age class (linear and quadratic effects), forming eight age classes. All models included the direct genetic additive, maternal genetic, and animal permanent environment as random effects, and the most appropriate model to describe the studied effects was defined according to the AIC and BIC criteria. Heritability estimates for birth weight varied between the two production regions, Campo Grande-Dourados (R1) and Alto Taquari-Bolsão (R2) and R1 (0.36 ± 0.02) and R2 (0.28 ± 0.03), and there were variations in the estimates at advanced ages. In both regions, the highest heritability values at 650 days of age were 0.47 ± 0.03 and 0.65 ± 0.02 for R1 and R2, respectively, with high heritability reflecting the high values of additive genetic variance. The random regression methodology was efficient in estimating growth curves and genetic parameters. Growth curves were different when they were estimated separately by sex, birth season, and production region. Genetic parameters estimated separately by region indicate differences in additive genetic variance, maternal additive, and animal permanent environment for weights up to 650 days of age. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Pesquisa Empírica de Campo Pesquisa Empírica de Campo |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33658 10.5433/1679-0359.2019v40n2p935 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33658 |
identifier_str_mv |
10.5433/1679-0359.2019v40n2p935 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33658/25276 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 40 No. 2 (2019); 935-946 Semina: Ciências Agrárias; v. 40 n. 2 (2019); 935-946 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1822182759405191168 |
dc.identifier.doi.none.fl_str_mv |
10.5433/1679-0359.2019v40n2p935 |