Evaluation of models utilized in in vitro gas production from tropical feedstuffs

Detalhes bibliográficos
Autor(a) principal: Cabral, Ícaro dos Santos
Data de Publicação: 2019
Outros Autores: Azevêdo, José Augusto Gomes, Pina, Douglas dos Santos, Pereira, Luiz Gustavo Ribeiro, Fernandes, Henrique Jorge, Almeida, Flávio Moreira de, Souza, Lígia Lins, Lima, Ronaldo Francisco de, Cirne, Luís Gabriel Alves
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33240
Resumo: This study aimed to evaluate the adequacy of seven non-linear models (France, Orskov and McDonald, Gompertz, exponential, logistic, two-pool exponential and two-pool logistic) in the adjustment of the curve and in the generation of parameters of cumulative gas production from five tropical feedstuffs (rice hulls, sugarcane, cassava chips, turnip by-product, and peach-palm by-product) used in ruminant nutrition. To this end, the feedstuffs were incubated in vitro in graduated glass syringes together with a buffer inoculum solution, in triplicate. Gas production was read at 0, 2, 4, 6, 8, 10, 12, 24, 26, 28, 30, 32, 36, 48, 52, 54, 56, 60 and 72 h of incubation. The data were used to generate the parameters of each model using the SAS statistical package. After the parameters were generated, the gas volume values were obtained at the aforementioned times, for each model, and these were compared with the values observed at incubation by using Model Evaluation System (MES) software. For the comparison, regression parameters were tested using Mayer’s test, in addition to the evaluation of the mean bias (MS), concordance correlation coefficient (CCC), and mean squared prediction error (MSPE). The France, Logistic, and Gompertz models, for rice hulls, and the Orskov and McDonald model, for cassava chips, were significant (P < 0.1) according to Mayer’s test, indicating lack of fit of the model. Besides presenting the lowest MSPE, the models that showed fit according to Mayer’s test were the two-pool logistic for rice hulls and cassava chips, and the two-pool exponential for sugarcane, turnip, and peach palm. Thus, the non-linear two-pool models are the most efficient in adjusting to the curve and in the generation of parameters of cumulative production of gases from the tested feedstuffs.
id UEL-11_2f75c51431be77216fea379652741b24
oai_identifier_str oai:ojs.pkp.sfu.ca:article/33240
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
repository_id_str
spelling Evaluation of models utilized in in vitro gas production from tropical feedstuffsAvaliação de modelos utilizados na produção de gás in vitro de alimentos tropicaisDegradation kineticEvaluation of feedstuffsNon-linear models.Avaliação de alimentosCinética de degradaçãoModelos não lineares.This study aimed to evaluate the adequacy of seven non-linear models (France, Orskov and McDonald, Gompertz, exponential, logistic, two-pool exponential and two-pool logistic) in the adjustment of the curve and in the generation of parameters of cumulative gas production from five tropical feedstuffs (rice hulls, sugarcane, cassava chips, turnip by-product, and peach-palm by-product) used in ruminant nutrition. To this end, the feedstuffs were incubated in vitro in graduated glass syringes together with a buffer inoculum solution, in triplicate. Gas production was read at 0, 2, 4, 6, 8, 10, 12, 24, 26, 28, 30, 32, 36, 48, 52, 54, 56, 60 and 72 h of incubation. The data were used to generate the parameters of each model using the SAS statistical package. After the parameters were generated, the gas volume values were obtained at the aforementioned times, for each model, and these were compared with the values observed at incubation by using Model Evaluation System (MES) software. For the comparison, regression parameters were tested using Mayer’s test, in addition to the evaluation of the mean bias (MS), concordance correlation coefficient (CCC), and mean squared prediction error (MSPE). The France, Logistic, and Gompertz models, for rice hulls, and the Orskov and McDonald model, for cassava chips, were significant (P < 0.1) according to Mayer’s test, indicating lack of fit of the model. Besides presenting the lowest MSPE, the models that showed fit according to Mayer’s test were the two-pool logistic for rice hulls and cassava chips, and the two-pool exponential for sugarcane, turnip, and peach palm. Thus, the non-linear two-pool models are the most efficient in adjusting to the curve and in the generation of parameters of cumulative production of gases from the tested feedstuffs.Objetivou-se avaliar a adequação de sete modelos não lineares (France, Orskov & McDonald, Gompertz, exponenciais simples e bicompartimental e logísticos simples e bicompartimental) no ajuste da curva e na geração de parâmetros de produção cumulativa de gases de cinco alimentos tropicais (casca de arroz, cana-de-açucar, raspa de mandioca, resíduo de nabo e resíduo da pupunha) utilizados na nutrição de ruminantes. Para tal, realizou-se a incubação in vitro, em triplicata, dos alimentos em seringas de vidro graduadas junto com solução tamponada de inoculante. A leitura da produção de gás foi realizada nos tempos 0, 2, 4, 6, 8, 10, 12, 24, 26, 28, 30, 32, 36, 48, 52, 54, 56, 60 e 72 horas. Os dados gerados foram utilizados para geração dos parâmetros de cada modelo testado com auxílio do pacote estatístico SAS. Após a geração dos parâmetros foram obtidos valores de volume de gás nos tempos supracitados, para cada modelo, e estes foram comparados aos valores observados na incubação através do programa Model Evaluation System (MES). Para comparação, testou-se os parâmetros de regressão pelo teste de Mayer, além da avaliação dos valores de viés médio (VM), coeficiente de concordância da correlação (CCC) e quadrado médio do erro de predição (QMEP). Os modelos de France, Logístico e Gompertz, para casca de arroz, além do modelo de Orskov & McDonald, para raspa de mandioca, foram significativos (P < 0,1) ao teste de Mayer, indicando falta de ajuste do modelo. Os modelos que apresentaram ajuste segundo o teste de Mayer, além de apresentarem os menores QMEP, foram o Logístico Bicompartimental para a casca de arroz e raspa de mandioca e o Exponencial Bicompartimental para cana-de-açucar, nabo e pupunha. Sendo assim, os modelos não lineares bicompartimentais são os mais eficientes no ajuste da curva e na geração de parâmetros de produção cumulativa de gases dos alimentos testados.UEL2019-02-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/3324010.5433/1679-0359.2019v40n1p443Semina: Ciências Agrárias; Vol. 40 No. 1 (2019); 443-456Semina: Ciências Agrárias; v. 40 n. 1 (2019); 443-4561679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33240/25019Copyright (c) 2019 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessCabral, Ícaro dos SantosAzevêdo, José Augusto GomesPina, Douglas dos SantosPereira, Luiz Gustavo RibeiroFernandes, Henrique JorgeAlmeida, Flávio Moreira deSouza, Lígia LinsLima, Ronaldo Francisco deCirne, Luís Gabriel Alves2022-10-19T15:34:55Zoai:ojs.pkp.sfu.ca:article/33240Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-19T15:34:55Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Evaluation of models utilized in in vitro gas production from tropical feedstuffs
Avaliação de modelos utilizados na produção de gás in vitro de alimentos tropicais
title Evaluation of models utilized in in vitro gas production from tropical feedstuffs
spellingShingle Evaluation of models utilized in in vitro gas production from tropical feedstuffs
Cabral, Ícaro dos Santos
Degradation kinetic
Evaluation of feedstuffs
Non-linear models.
Avaliação de alimentos
Cinética de degradação
Modelos não lineares.
title_short Evaluation of models utilized in in vitro gas production from tropical feedstuffs
title_full Evaluation of models utilized in in vitro gas production from tropical feedstuffs
title_fullStr Evaluation of models utilized in in vitro gas production from tropical feedstuffs
title_full_unstemmed Evaluation of models utilized in in vitro gas production from tropical feedstuffs
title_sort Evaluation of models utilized in in vitro gas production from tropical feedstuffs
author Cabral, Ícaro dos Santos
author_facet Cabral, Ícaro dos Santos
Azevêdo, José Augusto Gomes
Pina, Douglas dos Santos
Pereira, Luiz Gustavo Ribeiro
Fernandes, Henrique Jorge
Almeida, Flávio Moreira de
Souza, Lígia Lins
Lima, Ronaldo Francisco de
Cirne, Luís Gabriel Alves
author_role author
author2 Azevêdo, José Augusto Gomes
Pina, Douglas dos Santos
Pereira, Luiz Gustavo Ribeiro
Fernandes, Henrique Jorge
Almeida, Flávio Moreira de
Souza, Lígia Lins
Lima, Ronaldo Francisco de
Cirne, Luís Gabriel Alves
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Cabral, Ícaro dos Santos
Azevêdo, José Augusto Gomes
Pina, Douglas dos Santos
Pereira, Luiz Gustavo Ribeiro
Fernandes, Henrique Jorge
Almeida, Flávio Moreira de
Souza, Lígia Lins
Lima, Ronaldo Francisco de
Cirne, Luís Gabriel Alves
dc.subject.por.fl_str_mv Degradation kinetic
Evaluation of feedstuffs
Non-linear models.
Avaliação de alimentos
Cinética de degradação
Modelos não lineares.
topic Degradation kinetic
Evaluation of feedstuffs
Non-linear models.
Avaliação de alimentos
Cinética de degradação
Modelos não lineares.
description This study aimed to evaluate the adequacy of seven non-linear models (France, Orskov and McDonald, Gompertz, exponential, logistic, two-pool exponential and two-pool logistic) in the adjustment of the curve and in the generation of parameters of cumulative gas production from five tropical feedstuffs (rice hulls, sugarcane, cassava chips, turnip by-product, and peach-palm by-product) used in ruminant nutrition. To this end, the feedstuffs were incubated in vitro in graduated glass syringes together with a buffer inoculum solution, in triplicate. Gas production was read at 0, 2, 4, 6, 8, 10, 12, 24, 26, 28, 30, 32, 36, 48, 52, 54, 56, 60 and 72 h of incubation. The data were used to generate the parameters of each model using the SAS statistical package. After the parameters were generated, the gas volume values were obtained at the aforementioned times, for each model, and these were compared with the values observed at incubation by using Model Evaluation System (MES) software. For the comparison, regression parameters were tested using Mayer’s test, in addition to the evaluation of the mean bias (MS), concordance correlation coefficient (CCC), and mean squared prediction error (MSPE). The France, Logistic, and Gompertz models, for rice hulls, and the Orskov and McDonald model, for cassava chips, were significant (P < 0.1) according to Mayer’s test, indicating lack of fit of the model. Besides presenting the lowest MSPE, the models that showed fit according to Mayer’s test were the two-pool logistic for rice hulls and cassava chips, and the two-pool exponential for sugarcane, turnip, and peach palm. Thus, the non-linear two-pool models are the most efficient in adjusting to the curve and in the generation of parameters of cumulative production of gases from the tested feedstuffs.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33240
10.5433/1679-0359.2019v40n1p443
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33240
identifier_str_mv 10.5433/1679-0359.2019v40n1p443
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/33240/25019
dc.rights.driver.fl_str_mv Copyright (c) 2019 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 40 No. 1 (2019); 443-456
Semina: Ciências Agrárias; v. 40 n. 1 (2019); 443-456
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1799306079804325888