Comparison of multivariate methods for studying the G×E interaction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Semina. Ciências Agrárias (Online) |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/17805 |
Resumo: | The objective of this work was to evaluate three statistical multivariate methods for analyzing adaptability and environmental stratification simultaneously, using data from maize cultivars indicated for planting in the State of Paraná-Brazil. Under the FGGE and GGE methods, the genotypic effect adjusts the G×E interactions across environments, resulting in a high percentage of explanation associated with a smaller number of axes. Environmental stratification via the FGGE and GGE methods showed similar responses, while the AMMI method did not ensure grouping of environments. The adaptability analysis revealed low divergence patterns of the responses obtained through the three methods. Genotypes P30F35, P30F53, P30R50, P30K64 and AS 1570 showed high yields associated with general adaptability. The FGGE method allowed differences in yield responses in specific regions and the impact in locations belonging to the same environmental group (through rE) to be associated with the level of the simple portion of the G×E interaction. |
id |
UEL-11_3d21d911694948b507466e754e22f0b2 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/17805 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Comparison of multivariate methods for studying the G×E interactionComparação de métodos multivariados para estudo da interação G×AMultivariate analysisFactor analysisGenotypic effectMaize.Melhoramento VegetalAnálise multivariadaAnálise de fatoresEfeito genotípicoMilho.The objective of this work was to evaluate three statistical multivariate methods for analyzing adaptability and environmental stratification simultaneously, using data from maize cultivars indicated for planting in the State of Paraná-Brazil. Under the FGGE and GGE methods, the genotypic effect adjusts the G×E interactions across environments, resulting in a high percentage of explanation associated with a smaller number of axes. Environmental stratification via the FGGE and GGE methods showed similar responses, while the AMMI method did not ensure grouping of environments. The adaptability analysis revealed low divergence patterns of the responses obtained through the three methods. Genotypes P30F35, P30F53, P30R50, P30K64 and AS 1570 showed high yields associated with general adaptability. The FGGE method allowed differences in yield responses in specific regions and the impact in locations belonging to the same environmental group (through rE) to be associated with the level of the simple portion of the G×E interaction.O objetivo deste trabalho foi avaliar três métodos estatísticos multivariados, para análise de adaptabilidade e estratificação ambiental simultaneamente, utilizando dados de cultivares de milho indicadas para cultivo no estado do Paraná. Nos métodos GGE e FGGE, o efeito genotípico atuou como um coeficiente de ajuste das interações G×A ao longo dos ambientes, implicando em altos porcentuais de explicação, associados a um menor número de eixos. A estratificação ambiental pelos métodos GGE e FGGE apresentou respostas similares, enquanto pelo método AMMI não houve garantia de agrupamento de ambientes. As análises de adaptabilidade apresentaram poucas divergências de resposta, pelos três métodos. Os genótipos P30F35, P30F53, P30R50, P30K64 e AS 1570 apresentaram altas produtividades associadas à adaptabilidade geral. O método FGGE permitiu associar as diferenças de respostas de produtividade entre determinados conjuntos de ambientes e o impacto em localidades pertencentes ao mesmo conjunto ambiental (através de rA), com o auxílio do nível de porção simples atuante da interação G×A.UEL2015-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/1780510.5433/1679-0359.2015v36n6p3499Semina: Ciências Agrárias; Vol. 36 No. 6 (2015); 3499-3516Semina: Ciências Agrárias; v. 36 n. 6 (2015); 3499-35161679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/17805/17434http://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessGarbuglio, Deoclécio DomingosFerreira, Daniel FurtadoAraújo, Pedro Mário deGerage, Antonio CarlosShioga, Pedro Sentaro2022-12-02T16:04:04Zoai:ojs.pkp.sfu.ca:article/17805Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-12-02T16:04:04Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Comparison of multivariate methods for studying the G×E interaction Comparação de métodos multivariados para estudo da interação G×A |
title |
Comparison of multivariate methods for studying the G×E interaction |
spellingShingle |
Comparison of multivariate methods for studying the G×E interaction Garbuglio, Deoclécio Domingos Multivariate analysis Factor analysis Genotypic effect Maize. Melhoramento Vegetal Análise multivariada Análise de fatores Efeito genotípico Milho. |
title_short |
Comparison of multivariate methods for studying the G×E interaction |
title_full |
Comparison of multivariate methods for studying the G×E interaction |
title_fullStr |
Comparison of multivariate methods for studying the G×E interaction |
title_full_unstemmed |
Comparison of multivariate methods for studying the G×E interaction |
title_sort |
Comparison of multivariate methods for studying the G×E interaction |
author |
Garbuglio, Deoclécio Domingos |
author_facet |
Garbuglio, Deoclécio Domingos Ferreira, Daniel Furtado Araújo, Pedro Mário de Gerage, Antonio Carlos Shioga, Pedro Sentaro |
author_role |
author |
author2 |
Ferreira, Daniel Furtado Araújo, Pedro Mário de Gerage, Antonio Carlos Shioga, Pedro Sentaro |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Garbuglio, Deoclécio Domingos Ferreira, Daniel Furtado Araújo, Pedro Mário de Gerage, Antonio Carlos Shioga, Pedro Sentaro |
dc.subject.por.fl_str_mv |
Multivariate analysis Factor analysis Genotypic effect Maize. Melhoramento Vegetal Análise multivariada Análise de fatores Efeito genotípico Milho. |
topic |
Multivariate analysis Factor analysis Genotypic effect Maize. Melhoramento Vegetal Análise multivariada Análise de fatores Efeito genotípico Milho. |
description |
The objective of this work was to evaluate three statistical multivariate methods for analyzing adaptability and environmental stratification simultaneously, using data from maize cultivars indicated for planting in the State of Paraná-Brazil. Under the FGGE and GGE methods, the genotypic effect adjusts the G×E interactions across environments, resulting in a high percentage of explanation associated with a smaller number of axes. Environmental stratification via the FGGE and GGE methods showed similar responses, while the AMMI method did not ensure grouping of environments. The adaptability analysis revealed low divergence patterns of the responses obtained through the three methods. Genotypes P30F35, P30F53, P30R50, P30K64 and AS 1570 showed high yields associated with general adaptability. The FGGE method allowed differences in yield responses in specific regions and the impact in locations belonging to the same environmental group (through rE) to be associated with the level of the simple portion of the G×E interaction. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/17805 10.5433/1679-0359.2015v36n6p3499 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/17805 |
identifier_str_mv |
10.5433/1679-0359.2015v36n6p3499 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/17805/17434 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 36 No. 6 (2015); 3499-3516 Semina: Ciências Agrárias; v. 36 n. 6 (2015); 3499-3516 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1799306071561469952 |