Growth models for morphological traits of sunn hemp
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Semina. Ciências Agrárias (Online) |
DOI: | 10.5433/1679-0359.2017v38n5p2933 |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740 |
Resumo: | The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH), number of leaves (NL), stem diameter (SD), and root length (RL). These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period) and December 3, 2014 (second period). Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xi))and Logistic models the equation was used yi= a/(1+e^((-b-c*xi)). The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R²), Akaike information criterion (AIC), standard deviation of residuals (SDR), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and mean prediction error (MPE). |
id |
UEL-11_b54c4ccb8b9093ec1730813a4b6cb620 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/27740 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
spelling |
Growth models for morphological traits of sunn hempModelos de crescimento em caracteres morfológicos de crotalária junceaCover cropExperimental planningModeling.ModelagemPlanejamento experimentalPlanta de cobertura.The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH), number of leaves (NL), stem diameter (SD), and root length (RL). These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period) and December 3, 2014 (second period). Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xi))and Logistic models the equation was used yi= a/(1+e^((-b-c*xi)). The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R²), Akaike information criterion (AIC), standard deviation of residuals (SDR), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and mean prediction error (MPE).O objetivo deste trabalho foi ajustar modelos não lineares, Gompertz e Logístico, na descrição dos caracteres morfológicos de crotalária juncea. Foram realizados dois ensaios de uniformidade e os tratos culturais foram os mesmos em toda área experimental. A semeadura foi realizada em fileiras espaçadas de 0,5 m, com a densidade de 20 plantas por metro de fileira em área útil de 52 m × 50 m. Foram avaliados os caracteres morfológicos: altura de planta, número de folhas, diâmetro de caule e comprimento de raiz. Estas variáveis foram avaliadas, diariamente, em duas épocas de semeadura, 22 de outubro de 2014 (época 1) e 03 de dezembro de 2014 (época 2), totalizando 94 e 76 dias de avaliação, respectivamente. Para a época 1, aos 7 dias após a semeadura, e para a época 2, aos 13 dias após a semeadura, foram coletadas, aleatoriamente, quatro plantas em cada dia. Para o modelo de Gompertz foi utilizada a equação y=a*e^((?-e?^((b-c*xi)) e para o modelo Logístico foi utilizada a equação yi= a/(1+e^((-b-c*xi)). Foi calculado o ponto de inflexão para os modelos Gompertz e Logístico. A qualidade do ajuste dos modelos Gompertz e Logístico foi verificada pelo coeficiente de determinação ajustado, critério de informação de Akaike, desvio padrão residual, desvio médio absoluto, erro percentual médio absoluto e erro de predição médio. Os modelos de Gompertz e Logístico diferem entre si e entre as épocas de semeadura, para as estimativas dos parâmetros para altura de planta, número de folhas, diâmetro de caule e comprimento de raiz. As curvas de crescimento, para os caracteres altura de planta, número de folhas e diâmetro de caule, apresentaram ajustes satisfatórios para ambos os modelos, utilizando os seguintes critérios de avaliação: coeficiente de determinação ajustado, critério de informação de Akaike, desvio padrão residual, desvio médio absoluto, erro percentual médio absoluto e erro de predição médio.UEL2017-10-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa Científicaapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/2774010.5433/1679-0359.2017v38n5p2933Semina: Ciências Agrárias; Vol. 38 No. 5 (2017); 2933-2944Semina: Ciências Agrárias; v. 38 n. 5 (2017); 2933-29441679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740/21795Copyright (c) 2017 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessBem, Cláudia Marques deCargnelutti Filho, AlbertoFacco, GiovaniSchabarum, Denison EsequielSilveira, Daniela LixinskiSimões, Fernanda MartinsUliana, Daniela Barbieri2022-10-21T13:44:24Zoai:ojs.pkp.sfu.ca:article/27740Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-21T13:44:24Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Growth models for morphological traits of sunn hemp Modelos de crescimento em caracteres morfológicos de crotalária juncea |
title |
Growth models for morphological traits of sunn hemp |
spellingShingle |
Growth models for morphological traits of sunn hemp Growth models for morphological traits of sunn hemp Bem, Cláudia Marques de Cover crop Experimental planning Modeling. Modelagem Planejamento experimental Planta de cobertura. Bem, Cláudia Marques de Cover crop Experimental planning Modeling. Modelagem Planejamento experimental Planta de cobertura. |
title_short |
Growth models for morphological traits of sunn hemp |
title_full |
Growth models for morphological traits of sunn hemp |
title_fullStr |
Growth models for morphological traits of sunn hemp Growth models for morphological traits of sunn hemp |
title_full_unstemmed |
Growth models for morphological traits of sunn hemp Growth models for morphological traits of sunn hemp |
title_sort |
Growth models for morphological traits of sunn hemp |
author |
Bem, Cláudia Marques de |
author_facet |
Bem, Cláudia Marques de Bem, Cláudia Marques de Cargnelutti Filho, Alberto Facco, Giovani Schabarum, Denison Esequiel Silveira, Daniela Lixinski Simões, Fernanda Martins Uliana, Daniela Barbieri Cargnelutti Filho, Alberto Facco, Giovani Schabarum, Denison Esequiel Silveira, Daniela Lixinski Simões, Fernanda Martins Uliana, Daniela Barbieri |
author_role |
author |
author2 |
Cargnelutti Filho, Alberto Facco, Giovani Schabarum, Denison Esequiel Silveira, Daniela Lixinski Simões, Fernanda Martins Uliana, Daniela Barbieri |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Bem, Cláudia Marques de Cargnelutti Filho, Alberto Facco, Giovani Schabarum, Denison Esequiel Silveira, Daniela Lixinski Simões, Fernanda Martins Uliana, Daniela Barbieri |
dc.subject.por.fl_str_mv |
Cover crop Experimental planning Modeling. Modelagem Planejamento experimental Planta de cobertura. |
topic |
Cover crop Experimental planning Modeling. Modelagem Planejamento experimental Planta de cobertura. |
description |
The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH), number of leaves (NL), stem diameter (SD), and root length (RL). These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period) and December 3, 2014 (second period). Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xi))and Logistic models the equation was used yi= a/(1+e^((-b-c*xi)). The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R²), Akaike information criterion (AIC), standard deviation of residuals (SDR), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and mean prediction error (MPE). |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-03 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Pesquisa Científica |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740 10.5433/1679-0359.2017v38n5p2933 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740 |
identifier_str_mv |
10.5433/1679-0359.2017v38n5p2933 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740/21795 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 38 No. 5 (2017); 2933-2944 Semina: Ciências Agrárias; v. 38 n. 5 (2017); 2933-2944 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1822182758756122624 |
dc.identifier.doi.none.fl_str_mv |
10.5433/1679-0359.2017v38n5p2933 |