Growth models for morphological traits of sunn hemp

Detalhes bibliográficos
Autor(a) principal: Bem, Cláudia Marques de
Data de Publicação: 2017
Outros Autores: Cargnelutti Filho, Alberto, Facco, Giovani, Schabarum, Denison Esequiel, Silveira, Daniela Lixinski, Simões, Fernanda Martins, Uliana, Daniela Barbieri
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
DOI: 10.5433/1679-0359.2017v38n5p2933
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740
Resumo: The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH), number of leaves (NL), stem diameter (SD), and root length (RL). These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period) and December 3, 2014 (second period). Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xi))and Logistic models the equation was used yi= a/(1+e^((-b-c*xi)). The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R²), Akaike information criterion (AIC), standard deviation of residuals (SDR), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and mean prediction error (MPE).
id UEL-11_b54c4ccb8b9093ec1730813a4b6cb620
oai_identifier_str oai:ojs.pkp.sfu.ca:article/27740
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
spelling Growth models for morphological traits of sunn hempModelos de crescimento em caracteres morfológicos de crotalária junceaCover cropExperimental planningModeling.ModelagemPlanejamento experimentalPlanta de cobertura.The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH), number of leaves (NL), stem diameter (SD), and root length (RL). These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period) and December 3, 2014 (second period). Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xi))and Logistic models the equation was used yi= a/(1+e^((-b-c*xi)). The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R²), Akaike information criterion (AIC), standard deviation of residuals (SDR), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and mean prediction error (MPE).O objetivo deste trabalho foi ajustar modelos não lineares, Gompertz e Logístico, na descrição dos caracteres morfológicos de crotalária juncea. Foram realizados dois ensaios de uniformidade e os tratos culturais foram os mesmos em toda área experimental. A semeadura foi realizada em fileiras espaçadas de 0,5 m, com a densidade de 20 plantas por metro de fileira em área útil de 52 m × 50 m. Foram avaliados os caracteres morfológicos: altura de planta, número de folhas, diâmetro de caule e comprimento de raiz. Estas variáveis foram avaliadas, diariamente, em duas épocas de semeadura, 22 de outubro de 2014 (época 1) e 03 de dezembro de 2014 (época 2), totalizando 94 e 76 dias de avaliação, respectivamente. Para a época 1, aos 7 dias após a semeadura, e para a época 2, aos 13 dias após a semeadura, foram coletadas, aleatoriamente, quatro plantas em cada dia. Para o modelo de Gompertz foi utilizada a equação y=a*e^((?-e?^((b-c*xi)) e para o modelo Logístico foi utilizada a equação yi= a/(1+e^((-b-c*xi)). Foi calculado o ponto de inflexão para os modelos Gompertz e Logístico. A qualidade do ajuste dos modelos Gompertz e Logístico foi verificada pelo coeficiente de determinação ajustado, critério de informação de Akaike, desvio padrão residual, desvio médio absoluto, erro percentual médio absoluto e erro de predição médio. Os modelos de Gompertz e Logístico diferem entre si e entre as épocas de semeadura, para as estimativas dos parâmetros para altura de planta, número de folhas, diâmetro de caule e comprimento de raiz. As curvas de crescimento, para os caracteres altura de planta, número de folhas e diâmetro de caule, apresentaram ajustes satisfatórios para ambos os modelos, utilizando os seguintes critérios de avaliação: coeficiente de determinação ajustado, critério de informação de Akaike, desvio padrão residual, desvio médio absoluto, erro percentual médio absoluto e erro de predição médio.UEL2017-10-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa Científicaapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/2774010.5433/1679-0359.2017v38n5p2933Semina: Ciências Agrárias; Vol. 38 No. 5 (2017); 2933-2944Semina: Ciências Agrárias; v. 38 n. 5 (2017); 2933-29441679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740/21795Copyright (c) 2017 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessBem, Cláudia Marques deCargnelutti Filho, AlbertoFacco, GiovaniSchabarum, Denison EsequielSilveira, Daniela LixinskiSimões, Fernanda MartinsUliana, Daniela Barbieri2022-10-21T13:44:24Zoai:ojs.pkp.sfu.ca:article/27740Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-21T13:44:24Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Growth models for morphological traits of sunn hemp
Modelos de crescimento em caracteres morfológicos de crotalária juncea
title Growth models for morphological traits of sunn hemp
spellingShingle Growth models for morphological traits of sunn hemp
Growth models for morphological traits of sunn hemp
Bem, Cláudia Marques de
Cover crop
Experimental planning
Modeling.
Modelagem
Planejamento experimental
Planta de cobertura.
Bem, Cláudia Marques de
Cover crop
Experimental planning
Modeling.
Modelagem
Planejamento experimental
Planta de cobertura.
title_short Growth models for morphological traits of sunn hemp
title_full Growth models for morphological traits of sunn hemp
title_fullStr Growth models for morphological traits of sunn hemp
Growth models for morphological traits of sunn hemp
title_full_unstemmed Growth models for morphological traits of sunn hemp
Growth models for morphological traits of sunn hemp
title_sort Growth models for morphological traits of sunn hemp
author Bem, Cláudia Marques de
author_facet Bem, Cláudia Marques de
Bem, Cláudia Marques de
Cargnelutti Filho, Alberto
Facco, Giovani
Schabarum, Denison Esequiel
Silveira, Daniela Lixinski
Simões, Fernanda Martins
Uliana, Daniela Barbieri
Cargnelutti Filho, Alberto
Facco, Giovani
Schabarum, Denison Esequiel
Silveira, Daniela Lixinski
Simões, Fernanda Martins
Uliana, Daniela Barbieri
author_role author
author2 Cargnelutti Filho, Alberto
Facco, Giovani
Schabarum, Denison Esequiel
Silveira, Daniela Lixinski
Simões, Fernanda Martins
Uliana, Daniela Barbieri
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Bem, Cláudia Marques de
Cargnelutti Filho, Alberto
Facco, Giovani
Schabarum, Denison Esequiel
Silveira, Daniela Lixinski
Simões, Fernanda Martins
Uliana, Daniela Barbieri
dc.subject.por.fl_str_mv Cover crop
Experimental planning
Modeling.
Modelagem
Planejamento experimental
Planta de cobertura.
topic Cover crop
Experimental planning
Modeling.
Modelagem
Planejamento experimental
Planta de cobertura.
description The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH), number of leaves (NL), stem diameter (SD), and root length (RL). These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period) and December 3, 2014 (second period). Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xi))and Logistic models the equation was used yi= a/(1+e^((-b-c*xi)). The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R²), Akaike information criterion (AIC), standard deviation of residuals (SDR), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and mean prediction error (MPE).
publishDate 2017
dc.date.none.fl_str_mv 2017-10-03
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Pesquisa Científica
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740
10.5433/1679-0359.2017v38n5p2933
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740
identifier_str_mv 10.5433/1679-0359.2017v38n5p2933
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/27740/21795
dc.rights.driver.fl_str_mv Copyright (c) 2017 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 38 No. 5 (2017); 2933-2944
Semina: Ciências Agrárias; v. 38 n. 5 (2017); 2933-2944
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1822182758756122624
dc.identifier.doi.none.fl_str_mv 10.5433/1679-0359.2017v38n5p2933