Recovery and classification of Twitter user feelings in electoral period
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Informação & Informação |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/35310 |
Resumo: | Introduction: Social networks have become an important space for users to express their feelings. These comments are valuable for governors to know the citizens 'point of view about their political proposals and candidates perceive voters' reaction to the election campaign. Objectives: To analyze the feelings expressed by users on Twitter, referring to the candidates that competed for the presidency of Brazil in the year 2018, and to predict the result of the elections based on these posts. Methodology: The posts about the candidates that disputed the second round of the elections were the object of study. The software Orange Canvas, a free and open-source machine learning tool, was used to collect the sample and to extract the relevant information. The technique of opinion analysis was applied to automatic classification of feelings into positive, negative and neutral. For better analysis and interpretation of the results, the most important words of comments in word clouds and emotions were shown in frequency distribution charts. Results: There were a lot of negative feelings in the posts and the surprise emotion was the one that stood out the most for both competitors. Conclusions: The study showed that Twitter is an interesting place for users to express their feelings during the election period. However, the work was not able to predict the outcome of the elections based on the emotions. It is believed that this is due to the high rates of rejection of voters regarding the candidates and the polarization that has characterized Brazilian politics in recent times. |
id |
UEL-8_bee877cad26210ca19b5f19e0ca60c62 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/35310 |
network_acronym_str |
UEL-8 |
network_name_str |
Informação & Informação |
repository_id_str |
|
spelling |
Recovery and classification of Twitter user feelings in electoral periodRecuperación y clasificación de sentimientos de usuarios del Twitter en período electoralRecuperação e classificação de sentimentos de usuários do Twitter em período eleitoralSocial Networks AnalysisAutomatic ClassificationInformation RetrievalInformation ExtractionText MiningAnálisis de Redes SocialesClasificación AutomáticaRecuperación de la InformaciónExtracción de la InformaciónMinería de TextoAnálise de Redes SociaisClassificação AutomáticaRecuperação da InformaçãoExtração da InformaçãoMineração de TextoIntroduction: Social networks have become an important space for users to express their feelings. These comments are valuable for governors to know the citizens 'point of view about their political proposals and candidates perceive voters' reaction to the election campaign. Objectives: To analyze the feelings expressed by users on Twitter, referring to the candidates that competed for the presidency of Brazil in the year 2018, and to predict the result of the elections based on these posts. Methodology: The posts about the candidates that disputed the second round of the elections were the object of study. The software Orange Canvas, a free and open-source machine learning tool, was used to collect the sample and to extract the relevant information. The technique of opinion analysis was applied to automatic classification of feelings into positive, negative and neutral. For better analysis and interpretation of the results, the most important words of comments in word clouds and emotions were shown in frequency distribution charts. Results: There were a lot of negative feelings in the posts and the surprise emotion was the one that stood out the most for both competitors. Conclusions: The study showed that Twitter is an interesting place for users to express their feelings during the election period. However, the work was not able to predict the outcome of the elections based on the emotions. It is believed that this is due to the high rates of rejection of voters regarding the candidates and the polarization that has characterized Brazilian politics in recent times.Introducción: Las redes sociales se han convertido en un espacio importante para los usuarios expresar sus sentimientos. Estos comentarios son valiosos para los gobernantes saber el punto de vista de los ciudadanos sobre sus propuestas políticas y candidatos a percibir la reacción de los votantes acerca de la campaña electoral. Objetivos: Analizar los sentimientos expresados por los usuarios en Twitter, referentes a los candidatos que concurrieron a la presidencia de Brasil en el año 2018, y predecir el resultado de las elecciones con base en esos post. Metodología: Los posts sobre los candidatos que disputaron la segunda vuelta de las elecciones fueron el objeto de estudio. Se utilizó el software Orange Canvas, una herramienta de aprendizaje de máquina libre y de código abierto, para la recolección de la muestra y para la extracción de la información relevante. La técnica de análisis de opinión fue aplicada para la clasificación automática de los sentimientos en positivos, negativos y neutros. Para un mejor análisis e interpretación de los resultados, se mostraron las palabras más importantes de los comentarios en nubes de palabras y las emociones, en gráficos de distribución de frecuencia. Resultados: Se detectaron muchos sentimientos negativos en las entradas y la emoción de sorpresa fue la que más se destacó para ambos competidores. Conclusiones: El estudio mostró que Twitter es un sitio interesante para los usuarios expresar sus sentimientos en el período electoral. Sin embargo, el trabajo no fue capaz de predecir el resultado de las elecciones sobre la base de las emociones. Se cree que esto se debe a las altas tasas de rechazo de los votantes en cuanto a los candidatos y la polarización que ha caracterizado la política brasileña en los últimos tiempos.Introdução: A redes sociais tornaram-se um espaço importante para usuários expressares seus sentimentos. Esses comentários são valiosos para governantes saberem o ponto de vista dos cidadãos sobre as suas propostas políticas e candidatos perceberem a reação dos eleitores a respeito da campanha eleitoral. Objetivos: Analisar os sentimentos expressos pelos usuários no Twitter, referentes aos candidatos que concorreram à presidência do Brasil no ano de 2018, e predizer o resultado das eleições com base nessas postagens. Metodologia: Os posts sobre os candidatos que disputaram o segundo turno das eleições foram o objeto de estudo. Usou-se o software Orange Canvas, uma ferramenta de aprendizado de máquina livre e de código aberto, para a coleta da amostra e para a extração das informações relevantes. A técnica de análise de opinião foi aplicada para classificação automática dos sentimentos em positivos, negativos e neutros. Para melhor análise e interpretação dos resultados, exibiram-se as palavras mais importantes dos comentários em nuvens de palavras e as emoções, em gráficos de distribuição de frequência. Resultados: Detectaram-se muitos sentimentos negativos nas postagens e a emoção de surpresa foi a que mais se destacou para ambos os concorrentes.Conclusões: O estudo mostrou que o Twitter é um local interessante para usuários expressarem seus sentimentos no período eleitoral. Porém, o trabalho não foi capaz de prever o resultado das eleições com base nas emoções. Acredita-se que isso se deve às altas taxas de rejeição dos eleitores quanto aos candidatos e a polarização que tem caracterizado a política brasileira nos últimos tempos. Universidade Estadual de Londrina2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/informacao/article/view/3531010.5433/1981-8920.2020v25n1p92Informação & Informação; v. 25 n. 1 (2020); 92-1141981-8920reponame:Informação & Informaçãoinstname:Universidade Estadual de Londrina (UEL)instacron:UELporhttps://ojs.uel.br/revistas/uel/index.php/informacao/article/view/35310/pdfCopyright (c) 2021 Informação & Informaçãoinfo:eu-repo/semantics/openAccessMatos, Fernanda FernandesMagalhães, Lúcia Helena deSouza, Renato Rocha2021-04-01T00:09:21Zoai:ojs.pkp.sfu.ca:article/35310Revistahttps://www.uel.br/revistas/uel/index.php/informacao/indexPUBhttps://www.uel.br/revistas/uel/index.php/informacao/oai||infoeinfo@uel.br10.5433/1981-89201981-89201414-2139opendoar:2021-04-01T00:09:21Informação & Informação - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Recovery and classification of Twitter user feelings in electoral period Recuperación y clasificación de sentimientos de usuarios del Twitter en período electoral Recuperação e classificação de sentimentos de usuários do Twitter em período eleitoral |
title |
Recovery and classification of Twitter user feelings in electoral period |
spellingShingle |
Recovery and classification of Twitter user feelings in electoral period Matos, Fernanda Fernandes Social Networks Analysis Automatic Classification Information Retrieval Information Extraction Text Mining Análisis de Redes Sociales Clasificación Automática Recuperación de la Información Extracción de la Información Minería de Texto Análise de Redes Sociais Classificação Automática Recuperação da Informação Extração da Informação Mineração de Texto |
title_short |
Recovery and classification of Twitter user feelings in electoral period |
title_full |
Recovery and classification of Twitter user feelings in electoral period |
title_fullStr |
Recovery and classification of Twitter user feelings in electoral period |
title_full_unstemmed |
Recovery and classification of Twitter user feelings in electoral period |
title_sort |
Recovery and classification of Twitter user feelings in electoral period |
author |
Matos, Fernanda Fernandes |
author_facet |
Matos, Fernanda Fernandes Magalhães, Lúcia Helena de Souza, Renato Rocha |
author_role |
author |
author2 |
Magalhães, Lúcia Helena de Souza, Renato Rocha |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Matos, Fernanda Fernandes Magalhães, Lúcia Helena de Souza, Renato Rocha |
dc.subject.por.fl_str_mv |
Social Networks Analysis Automatic Classification Information Retrieval Information Extraction Text Mining Análisis de Redes Sociales Clasificación Automática Recuperación de la Información Extracción de la Información Minería de Texto Análise de Redes Sociais Classificação Automática Recuperação da Informação Extração da Informação Mineração de Texto |
topic |
Social Networks Analysis Automatic Classification Information Retrieval Information Extraction Text Mining Análisis de Redes Sociales Clasificación Automática Recuperación de la Información Extracción de la Información Minería de Texto Análise de Redes Sociais Classificação Automática Recuperação da Informação Extração da Informação Mineração de Texto |
description |
Introduction: Social networks have become an important space for users to express their feelings. These comments are valuable for governors to know the citizens 'point of view about their political proposals and candidates perceive voters' reaction to the election campaign. Objectives: To analyze the feelings expressed by users on Twitter, referring to the candidates that competed for the presidency of Brazil in the year 2018, and to predict the result of the elections based on these posts. Methodology: The posts about the candidates that disputed the second round of the elections were the object of study. The software Orange Canvas, a free and open-source machine learning tool, was used to collect the sample and to extract the relevant information. The technique of opinion analysis was applied to automatic classification of feelings into positive, negative and neutral. For better analysis and interpretation of the results, the most important words of comments in word clouds and emotions were shown in frequency distribution charts. Results: There were a lot of negative feelings in the posts and the surprise emotion was the one that stood out the most for both competitors. Conclusions: The study showed that Twitter is an interesting place for users to express their feelings during the election period. However, the work was not able to predict the outcome of the elections based on the emotions. It is believed that this is due to the high rates of rejection of voters regarding the candidates and the polarization that has characterized Brazilian politics in recent times. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/35310 10.5433/1981-8920.2020v25n1p92 |
url |
https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/35310 |
identifier_str_mv |
10.5433/1981-8920.2020v25n1p92 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/35310/pdf |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Informação & Informação info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Informação & Informação |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Londrina |
publisher.none.fl_str_mv |
Universidade Estadual de Londrina |
dc.source.none.fl_str_mv |
Informação & Informação; v. 25 n. 1 (2020); 92-114 1981-8920 reponame:Informação & Informação instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Informação & Informação |
collection |
Informação & Informação |
repository.name.fl_str_mv |
Informação & Informação - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
||infoeinfo@uel.br |
_version_ |
1799305985580335104 |