Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Informação & Informação |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467 |
Resumo: | Introduction: In the Big Data context, as an urgent need arises the application of individual and corporate rights and regulatory standards that safeguard privacy, impartiality, accuracy and transparency. In this scenario, Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of four principles: impartiality, accuracy, confidentiality and transparency. Objective: To address alternatives that can ensure the application of the FACT guidelines. Methodology: An exploratory and descriptive research with a qualitative approach was developed. Searches were performed on the Web of Science, Scopus, and Scholar Google search engines using Responsible Data Science, Fairness, Accuracy, Confidentiality, Transparency Data Science, FACT, and FAT related to Data Science. Results: Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of the principles: impartiality, accuracy, confidentiality and transparency. In implementing these guidelines, consideration should be given to the use of techniques and approaches being developed by Green Data Science. Conclusions: It is concluded that Green Data Science and the FACT guidelines contribute significantly to safeguarding individual rights and that no measures need to be taken to prevent access and reuse of data. Challenges for implementing the FACT guidelines require studies, sine qua non conditions for tools for data analysis and dissemination to be developed at the design stage of methodologies. |
id |
UEL-8_f0a642860c4b93ba44c870d4eeeeb2d3 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/38467 |
network_acronym_str |
UEL-8 |
network_name_str |
Informação & Informação |
repository_id_str |
|
spelling |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of dataGarantizar la imparcialidad, la exactitud, la confidencialidad y la transparencia de los datos en la perspectiva de la Ciencia de los DatosCiência responsável dos dados: imparcialidade, precisão, confidencialidade, e transparência dos dadosData scienceEthicBig dataResponsible data scienceCiencia de DatosÉticaBig DataCiencia Responsable de DatosCiência dos dadosÉticaBig dataCiência Responsável dos DadosIntroduction: In the Big Data context, as an urgent need arises the application of individual and corporate rights and regulatory standards that safeguard privacy, impartiality, accuracy and transparency. In this scenario, Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of four principles: impartiality, accuracy, confidentiality and transparency. Objective: To address alternatives that can ensure the application of the FACT guidelines. Methodology: An exploratory and descriptive research with a qualitative approach was developed. Searches were performed on the Web of Science, Scopus, and Scholar Google search engines using Responsible Data Science, Fairness, Accuracy, Confidentiality, Transparency Data Science, FACT, and FAT related to Data Science. Results: Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of the principles: impartiality, accuracy, confidentiality and transparency. In implementing these guidelines, consideration should be given to the use of techniques and approaches being developed by Green Data Science. Conclusions: It is concluded that Green Data Science and the FACT guidelines contribute significantly to safeguarding individual rights and that no measures need to be taken to prevent access and reuse of data. Challenges for implementing the FACT guidelines require studies, sine qua non conditions for tools for data analysis and dissemination to be developed at the design stage of methodologies.Introducción: en el contexto de Big Data, como una necesidad urgente surge la aplicación de los derechos individuales y corporativos y las normas reguladoras que salvaguardan la privacidad, imparcialidad, precisión y transparencia. En este escenario, Responsible Data Science surge como una iniciativa basada en las pautas de FACT, que corresponden a la adopción de cuatro principios: imparcialidad, precisión, confidencialidad y transparencia. Objetivo:abordar alternativas que puedan garantizar la aplicación de las pautas de FACT. Metodología: se desarrolló una investigación exploratoria y descriptiva con un enfoque cualitativo. Las búsquedas se realizaron en los motores de búsqueda de Web of Science, Scopus y Scholar Google utilizando los términos "Ciencia de datos responsable", "Justicia, precisión, confidencialidad, transparencia + ciencia de datos", FACT y FAT relacionados con ciência de los datos. Resultados: Responsible Data Science surge como una iniciativa basada en los lineamientos de FACT, que corresponden a la adopción de los principios: imparcialidad, precisión, confidencialidad y transparencia. Al implementar estas pautas, se debe considerar el uso de técnicas y enfoques desarrollados por Green Data Science. Conclusiones: Se concluye que Green Data Science y las pautas FACT contribuyen significativamente a salvaguardar los derechos individuales y que no es necesario tomar medidas para evitar el acceso y la reutilización de datos. Los desafíos para implementar las pautas FACT requieren estudios, condiciones sine qua non para desarrollar herramientas para el análisis y la difusión de datos en la etapa de diseño de las metodologias.Introdução: no contexto Big Data, surge, como necessidade urgente, a aplicação de direitos individuais e empresariais e de normas regulatórias que resguardem a privacidade, a imparcialidade, a precisão e a transparência. Nesse cenário, a Responsible Data Science desponta como uma iniciativa que tem como base as diretrizes FACT, que correspondem à adoção de quatro princípios: imparcialidade, precisão, confidencialidade e transparência. Objetivo: abordar alternativas que podem assegurar a aplicação das diretrizes FACT. Metodologia: foi desenvolvida investigação exploratória e descritiva com abordagem qualitativa. Foram realizadas pesquisas nas bases de dados bibliográficas Web of Science, Scopus e pelo motor de busca Scholar Google com a utilização dos termos “Responsible Data Science”, “Fairness, Accuracy, Confidentiality, Transparency + Data Science”, FACT e FAT relacionados com Data Science. Resultados: a Responsible Data Science desponta como uma iniciativa que tem como base as diretrizes FACT, que correspondem à adoção dos princípios: imparcialidade, precisão, confidencialidade e transparência. Para a implementação dessas diretrizes, deve-se considerar o uso de técnicas e abordagens que estão sendo desenvolvidas pela Green Data Science. Conclusões: concluiu-se que a Green Data Science e as diretrizes FACT contribuem significativamente para a salvaguarda dos direitos individuais, não sendo necessário recorrer a medidas que impeçam o acesso e a reutilização de dados. Os desafios para implementar as diretrizes FACT requerem estudos, condição sine qua non para que as ferramentas para análise e disseminação dos dados sejam desenvolvidas ainda na fase de concepção de metodologias.Universidade Estadual de Londrina2020-07-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/informacao/article/view/3846710.5433/1981-8920.2020v25n2p26Informação & Informação; v. 25 n. 2 (2020); 26-481981-8920reponame:Informação & Informaçãoinstname:Universidade Estadual de Londrina (UEL)instacron:UELporhttps://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467/pdfCopyright (c) 2020 Informação & Informaçãoinfo:eu-repo/semantics/openAccessAndrade, Morgana CarneiroGonçalez, Paula Regina Ventura AmorimBerti Junior, Decio WeyBaptista, Ana AliceConeglian, Caio Saraiva2022-07-11T15:47:18Zoai:ojs.pkp.sfu.ca:article/38467Revistahttps://www.uel.br/revistas/uel/index.php/informacao/indexPUBhttps://www.uel.br/revistas/uel/index.php/informacao/oai||infoeinfo@uel.br10.5433/1981-89201981-89201414-2139opendoar:2022-07-11T15:47:18Informação & Informação - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data Garantizar la imparcialidad, la exactitud, la confidencialidad y la transparencia de los datos en la perspectiva de la Ciencia de los Datos Ciência responsável dos dados: imparcialidade, precisão, confidencialidade, e transparência dos dados |
title |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data |
spellingShingle |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data Andrade, Morgana Carneiro Data science Ethic Big data Responsible data science Ciencia de Datos Ética Big Data Ciencia Responsable de Datos Ciência dos dados Ética Big data Ciência Responsável dos Dados |
title_short |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data |
title_full |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data |
title_fullStr |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data |
title_full_unstemmed |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data |
title_sort |
Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data |
author |
Andrade, Morgana Carneiro |
author_facet |
Andrade, Morgana Carneiro Gonçalez, Paula Regina Ventura Amorim Berti Junior, Decio Wey Baptista, Ana Alice Coneglian, Caio Saraiva |
author_role |
author |
author2 |
Gonçalez, Paula Regina Ventura Amorim Berti Junior, Decio Wey Baptista, Ana Alice Coneglian, Caio Saraiva |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Andrade, Morgana Carneiro Gonçalez, Paula Regina Ventura Amorim Berti Junior, Decio Wey Baptista, Ana Alice Coneglian, Caio Saraiva |
dc.subject.por.fl_str_mv |
Data science Ethic Big data Responsible data science Ciencia de Datos Ética Big Data Ciencia Responsable de Datos Ciência dos dados Ética Big data Ciência Responsável dos Dados |
topic |
Data science Ethic Big data Responsible data science Ciencia de Datos Ética Big Data Ciencia Responsable de Datos Ciência dos dados Ética Big data Ciência Responsável dos Dados |
description |
Introduction: In the Big Data context, as an urgent need arises the application of individual and corporate rights and regulatory standards that safeguard privacy, impartiality, accuracy and transparency. In this scenario, Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of four principles: impartiality, accuracy, confidentiality and transparency. Objective: To address alternatives that can ensure the application of the FACT guidelines. Methodology: An exploratory and descriptive research with a qualitative approach was developed. Searches were performed on the Web of Science, Scopus, and Scholar Google search engines using Responsible Data Science, Fairness, Accuracy, Confidentiality, Transparency Data Science, FACT, and FAT related to Data Science. Results: Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of the principles: impartiality, accuracy, confidentiality and transparency. In implementing these guidelines, consideration should be given to the use of techniques and approaches being developed by Green Data Science. Conclusions: It is concluded that Green Data Science and the FACT guidelines contribute significantly to safeguarding individual rights and that no measures need to be taken to prevent access and reuse of data. Challenges for implementing the FACT guidelines require studies, sine qua non conditions for tools for data analysis and dissemination to be developed at the design stage of methodologies. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467 10.5433/1981-8920.2020v25n2p26 |
url |
https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467 |
identifier_str_mv |
10.5433/1981-8920.2020v25n2p26 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467/pdf |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Informação & Informação info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Informação & Informação |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Londrina |
publisher.none.fl_str_mv |
Universidade Estadual de Londrina |
dc.source.none.fl_str_mv |
Informação & Informação; v. 25 n. 2 (2020); 26-48 1981-8920 reponame:Informação & Informação instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Informação & Informação |
collection |
Informação & Informação |
repository.name.fl_str_mv |
Informação & Informação - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
||infoeinfo@uel.br |
_version_ |
1799305985727135744 |