Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data

Detalhes bibliográficos
Autor(a) principal: Andrade, Morgana Carneiro
Data de Publicação: 2020
Outros Autores: Gonçalez, Paula Regina Ventura Amorim, Berti Junior, Decio Wey, Baptista, Ana Alice, Coneglian, Caio Saraiva
Tipo de documento: Artigo
Idioma: por
Título da fonte: Informação & Informação
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467
Resumo: Introduction: In the Big Data context, as an urgent need arises the application of individual and corporate rights and regulatory standards that safeguard privacy, impartiality, accuracy and transparency. In this scenario, Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of four principles: impartiality, accuracy, confidentiality and transparency. Objective: To address alternatives that can ensure the application of the FACT guidelines. Methodology: An exploratory and descriptive research with a qualitative approach was developed. Searches were performed on the Web of Science, Scopus, and Scholar Google search engines using Responsible Data Science, Fairness, Accuracy, Confidentiality, Transparency Data Science, FACT, and FAT related to Data Science. Results: Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of the principles: impartiality, accuracy, confidentiality and transparency. In implementing these guidelines, consideration should be given to the use of techniques and approaches being developed by Green Data Science. Conclusions: It is concluded that Green Data Science and the FACT guidelines contribute significantly to safeguarding individual rights and that no measures need to be taken to prevent access and reuse of data. Challenges for implementing the FACT guidelines require studies, sine qua non conditions for tools for data analysis and dissemination to be developed at the design stage of methodologies.
id UEL-8_f0a642860c4b93ba44c870d4eeeeb2d3
oai_identifier_str oai:ojs.pkp.sfu.ca:article/38467
network_acronym_str UEL-8
network_name_str Informação & Informação
repository_id_str
spelling Responsible Data Science: impartiality, accuracy, confidentiality and transparency of dataGarantizar la imparcialidad, la exactitud, la confidencialidad y la transparencia de los datos en la perspectiva de la Ciencia de los DatosCiência responsável dos dados: imparcialidade, precisão, confidencialidade, e transparência dos dadosData scienceEthicBig dataResponsible data scienceCiencia de DatosÉticaBig DataCiencia Responsable de DatosCiência dos dadosÉticaBig dataCiência Responsável dos DadosIntroduction: In the Big Data context, as an urgent need arises the application of individual and corporate rights and regulatory standards that safeguard privacy, impartiality, accuracy and transparency. In this scenario, Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of four principles: impartiality, accuracy, confidentiality and transparency. Objective: To address alternatives that can ensure the application of the FACT guidelines. Methodology: An exploratory and descriptive research with a qualitative approach was developed. Searches were performed on the Web of Science, Scopus, and Scholar Google search engines using Responsible Data Science, Fairness, Accuracy, Confidentiality, Transparency Data Science, FACT, and FAT related to Data Science. Results: Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of the principles: impartiality, accuracy, confidentiality and transparency. In implementing these guidelines, consideration should be given to the use of techniques and approaches being developed by Green Data Science. Conclusions: It is concluded that Green Data Science and the FACT guidelines contribute significantly to safeguarding individual rights and that no measures need to be taken to prevent access and reuse of data. Challenges for implementing the FACT guidelines require studies, sine qua non conditions for tools for data analysis and dissemination to be developed at the design stage of methodologies.Introducción: en el contexto de Big Data, como una necesidad urgente surge la aplicación de los derechos individuales y corporativos y las normas reguladoras que salvaguardan la privacidad, imparcialidad, precisión y transparencia. En este escenario, Responsible Data Science surge como una iniciativa basada en las pautas de FACT, que corresponden a la adopción de cuatro principios: imparcialidad, precisión, confidencialidad y transparencia. Objetivo:abordar alternativas que puedan garantizar la aplicación de las pautas de FACT. Metodología: se desarrolló una investigación exploratoria y descriptiva con un enfoque cualitativo. Las búsquedas se realizaron en los motores de búsqueda de Web of Science, Scopus y Scholar Google utilizando los términos "Ciencia de datos responsable", "Justicia, precisión, confidencialidad, transparencia + ciencia de datos", FACT y FAT relacionados con ciência de los datos. Resultados: Responsible Data Science surge como una iniciativa basada en los lineamientos de FACT, que corresponden a la adopción de los principios: imparcialidad, precisión, confidencialidad y transparencia. Al implementar estas pautas, se debe considerar el uso de técnicas y enfoques desarrollados por Green Data Science. Conclusiones: Se concluye que Green Data Science y las pautas FACT contribuyen significativamente a salvaguardar los derechos individuales y que no es necesario tomar medidas para evitar el acceso y la reutilización de datos. Los desafíos para implementar las pautas FACT requieren estudios, condiciones sine qua non para desarrollar herramientas para el análisis y la difusión de datos en la etapa de diseño de las metodologias.Introdução: no contexto Big Data, surge, como necessidade urgente, a aplicação de direitos individuais e empresariais e de normas regulatórias que resguardem a privacidade, a imparcialidade, a precisão e a transparência. Nesse cenário, a Responsible Data Science desponta como uma iniciativa que tem como base as diretrizes FACT, que correspondem à adoção de quatro princípios: imparcialidade, precisão, confidencialidade e transparência. Objetivo: abordar alternativas que podem assegurar a aplicação das diretrizes FACT. Metodologia: foi desenvolvida investigação exploratória e descritiva com abordagem qualitativa.  Foram realizadas pesquisas nas bases de dados bibliográficas Web of Science, Scopus e pelo motor de busca Scholar Google com a utilização dos termos “Responsible Data Science”, “Fairness, Accuracy, Confidentiality, Transparency + Data Science”, FACT e FAT relacionados com Data Science. Resultados: a Responsible Data Science desponta como uma iniciativa que tem como base as diretrizes FACT, que correspondem à adoção dos princípios: imparcialidade, precisão, confidencialidade e transparência. Para a implementação dessas diretrizes, deve-se considerar o uso de técnicas e abordagens que estão sendo desenvolvidas pela Green Data Science.  Conclusões: concluiu-se que a Green Data Science e as diretrizes FACT contribuem significativamente para a salvaguarda dos direitos individuais, não sendo necessário recorrer a medidas que impeçam o acesso e a reutilização de dados.  Os desafios para implementar as diretrizes FACT requerem estudos, condição sine qua non para que as ferramentas para análise e disseminação dos dados sejam desenvolvidas ainda na fase de concepção de metodologias.Universidade Estadual de Londrina2020-07-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/informacao/article/view/3846710.5433/1981-8920.2020v25n2p26Informação & Informação; v. 25 n. 2 (2020); 26-481981-8920reponame:Informação & Informaçãoinstname:Universidade Estadual de Londrina (UEL)instacron:UELporhttps://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467/pdfCopyright (c) 2020 Informação & Informaçãoinfo:eu-repo/semantics/openAccessAndrade, Morgana CarneiroGonçalez, Paula Regina Ventura AmorimBerti Junior, Decio WeyBaptista, Ana AliceConeglian, Caio Saraiva2022-07-11T15:47:18Zoai:ojs.pkp.sfu.ca:article/38467Revistahttps://www.uel.br/revistas/uel/index.php/informacao/indexPUBhttps://www.uel.br/revistas/uel/index.php/informacao/oai||infoeinfo@uel.br10.5433/1981-89201981-89201414-2139opendoar:2022-07-11T15:47:18Informação & Informação - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
Garantizar la imparcialidad, la exactitud, la confidencialidad y la transparencia de los datos en la perspectiva de la Ciencia de los Datos
Ciência responsável dos dados: imparcialidade, precisão, confidencialidade, e transparência dos dados
title Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
spellingShingle Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
Andrade, Morgana Carneiro
Data science
Ethic
Big data
Responsible data science
Ciencia de Datos
Ética
Big Data
Ciencia Responsable de Datos
Ciência dos dados
Ética
Big data
Ciência Responsável dos Dados
title_short Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
title_full Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
title_fullStr Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
title_full_unstemmed Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
title_sort Responsible Data Science: impartiality, accuracy, confidentiality and transparency of data
author Andrade, Morgana Carneiro
author_facet Andrade, Morgana Carneiro
Gonçalez, Paula Regina Ventura Amorim
Berti Junior, Decio Wey
Baptista, Ana Alice
Coneglian, Caio Saraiva
author_role author
author2 Gonçalez, Paula Regina Ventura Amorim
Berti Junior, Decio Wey
Baptista, Ana Alice
Coneglian, Caio Saraiva
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Andrade, Morgana Carneiro
Gonçalez, Paula Regina Ventura Amorim
Berti Junior, Decio Wey
Baptista, Ana Alice
Coneglian, Caio Saraiva
dc.subject.por.fl_str_mv Data science
Ethic
Big data
Responsible data science
Ciencia de Datos
Ética
Big Data
Ciencia Responsable de Datos
Ciência dos dados
Ética
Big data
Ciência Responsável dos Dados
topic Data science
Ethic
Big data
Responsible data science
Ciencia de Datos
Ética
Big Data
Ciencia Responsable de Datos
Ciência dos dados
Ética
Big data
Ciência Responsável dos Dados
description Introduction: In the Big Data context, as an urgent need arises the application of individual and corporate rights and regulatory standards that safeguard privacy, impartiality, accuracy and transparency. In this scenario, Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of four principles: impartiality, accuracy, confidentiality and transparency. Objective: To address alternatives that can ensure the application of the FACT guidelines. Methodology: An exploratory and descriptive research with a qualitative approach was developed. Searches were performed on the Web of Science, Scopus, and Scholar Google search engines using Responsible Data Science, Fairness, Accuracy, Confidentiality, Transparency Data Science, FACT, and FAT related to Data Science. Results: Responsible Data Science emerges as an initiative based on the FACT guidelines, which correspond to the adoption of the principles: impartiality, accuracy, confidentiality and transparency. In implementing these guidelines, consideration should be given to the use of techniques and approaches being developed by Green Data Science. Conclusions: It is concluded that Green Data Science and the FACT guidelines contribute significantly to safeguarding individual rights and that no measures need to be taken to prevent access and reuse of data. Challenges for implementing the FACT guidelines require studies, sine qua non conditions for tools for data analysis and dissemination to be developed at the design stage of methodologies.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467
10.5433/1981-8920.2020v25n2p26
url https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467
identifier_str_mv 10.5433/1981-8920.2020v25n2p26
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/informacao/article/view/38467/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2020 Informação & Informação
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Informação & Informação
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Londrina
publisher.none.fl_str_mv Universidade Estadual de Londrina
dc.source.none.fl_str_mv Informação & Informação; v. 25 n. 2 (2020); 26-48
1981-8920
reponame:Informação & Informação
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Informação & Informação
collection Informação & Informação
repository.name.fl_str_mv Informação & Informação - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv ||infoeinfo@uel.br
_version_ 1799305985727135744