Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas

Detalhes bibliográficos
Autor(a) principal: Almeida, Regiani Aparecida de
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
Texto Completo: http://repositorio.uem.br:8080/jspui/handle/1/3642
Resumo: Processes that employ Supercritical fluid as the SAS technique or Supercritical Antisolvent using Supercritical CO2 as Antisolvent to the precipitation of particles, in micro and nanoscales, allow to process a wide variety of high quality products from the pharmaceutical and food industry. They have advantages over other recrystallization techniques to produce particles of small size with spherical shapes as precipitation heat sensitive compounds, which are desirable in many applications and easy to separate of the organic solvent. However, the guarantee of obtaining particles with beneficial biophysical characteristics and shapes is related to a combination of operating process parameters of each solute-organic solvent system under consideration. This combination of parameters is a great defiance in the process control. It is known that by varying the antisolvent and solution flow rates, operating pressure and temperature, the chamber geometry and capillary injection tube is possible to vary properties such as density and solubility in supercritical conditions of the mixture. Thus, it is feasible to enhance the control over the precipitated particles, size and shape. Indeed, the mechanisms of precipitation using supercritical fluids have not been systematically studied and a little is known about the fluid dynamic behavior of supercritical mixture and its effects on the particles, size and shape. This work proposes a study about flow dynamics in supercritical conditions, in a SAS - precipitation chamber. The research is based on the solution of a mathematical model involving the variables that describe the flow in such conditions. The system of partial and differential equations that model the process is numerically solved by employing the ANSYS FLUENT commercial code. Four cases of chambers with dimensions and different injection systems were chosen from the literature: two two-dimensional and two three-dimensional cases. It was analyzed how the variations, in the operating conditions (geometry of the chamber, pressure and flow rates of antisolvent), correlate to the trends of experimental particle size and morphology as reported in the literature. A comparison among the results has pointed out that two and three dimensional approaches allow the 2D to answer questions about the influence of the process parameters on the quality of shaped particles, with few computational efforts. However, the 3D approach has shown more complex patterns, the influence of the parameters is better detailed in this case, and this method should be selected when possible. It was observed that the fluid flows faster along the bottom wall with a greater velocity of gradients, in the shorter chambers length, and this may explain the formation of larger particles clusters experimentally observed. The tracking of the jet boundary allowed locating the possible regions of particle nucleation. This was corroborated by the supersaturation profiles that revealed very distinct nucleation regions in the precipitation chamber.
id UEM-10_1cb1a7bd121757e05accd5cf59193343
oai_identifier_str oai:localhost:1/3642
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículasStudy of turbulent flow in capillary supercritical fluid applied to the production of nanoparticlesFluido supercríticoSupersaturação.Modelagem matemáticaFluidodinâmica computacionalBrasil.Supercritical FluidSupersaturationMathematical ModelingComputational Fluid DynamicsBrazil.EngenhariasEngenharia QuímicaProcesses that employ Supercritical fluid as the SAS technique or Supercritical Antisolvent using Supercritical CO2 as Antisolvent to the precipitation of particles, in micro and nanoscales, allow to process a wide variety of high quality products from the pharmaceutical and food industry. They have advantages over other recrystallization techniques to produce particles of small size with spherical shapes as precipitation heat sensitive compounds, which are desirable in many applications and easy to separate of the organic solvent. However, the guarantee of obtaining particles with beneficial biophysical characteristics and shapes is related to a combination of operating process parameters of each solute-organic solvent system under consideration. This combination of parameters is a great defiance in the process control. It is known that by varying the antisolvent and solution flow rates, operating pressure and temperature, the chamber geometry and capillary injection tube is possible to vary properties such as density and solubility in supercritical conditions of the mixture. Thus, it is feasible to enhance the control over the precipitated particles, size and shape. Indeed, the mechanisms of precipitation using supercritical fluids have not been systematically studied and a little is known about the fluid dynamic behavior of supercritical mixture and its effects on the particles, size and shape. This work proposes a study about flow dynamics in supercritical conditions, in a SAS - precipitation chamber. The research is based on the solution of a mathematical model involving the variables that describe the flow in such conditions. The system of partial and differential equations that model the process is numerically solved by employing the ANSYS FLUENT commercial code. Four cases of chambers with dimensions and different injection systems were chosen from the literature: two two-dimensional and two three-dimensional cases. It was analyzed how the variations, in the operating conditions (geometry of the chamber, pressure and flow rates of antisolvent), correlate to the trends of experimental particle size and morphology as reported in the literature. A comparison among the results has pointed out that two and three dimensional approaches allow the 2D to answer questions about the influence of the process parameters on the quality of shaped particles, with few computational efforts. However, the 3D approach has shown more complex patterns, the influence of the parameters is better detailed in this case, and this method should be selected when possible. It was observed that the fluid flows faster along the bottom wall with a greater velocity of gradients, in the shorter chambers length, and this may explain the formation of larger particles clusters experimentally observed. The tracking of the jet boundary allowed locating the possible regions of particle nucleation. This was corroborated by the supersaturation profiles that revealed very distinct nucleation regions in the precipitation chamber.Processos que empregam fluido em estado supercrítico como a técnica SAS ou Supercritical Antissolvent que utilizam CO2 como antissolvente para a precipitação de partículas em escala micro e nanométrica permitem o processamento de uma grande variedade de produtos de alta qualidade da indústria farmacêutica e de alimentos. Apresentam vantagens em relação a outras técnicas de recristalização como: a precipitação de compostos termo sensíveis, a obtenção de partículas de pequenos tamanhos com formato esférico, desejável em muitas aplicações, e a facilidade na separação do solvente orgânico. Porém, a garantia da obtenção de partículas com forma e características biofísicas desejáveis está relacionada com uma combinação de parâmetros de operação do processo que sejam adequados a cada sistema solvente orgânico-soluto considerado. Tal combinação de parâmetros constitui um grande desafio no controle do processo. É conhecido que com a variação de parâmetros como: vazão do antissolvente e da solução, pressão e temperatura de operação, geometria da câmara de precipitação e de capilares de injeção, é possível variar propriedades como a densidade e a solubilidade de uma mistura em condições supercríticas, facilitando o controle sobre o tamanho e a forma das partículas precipitadas. Visto que os mecanismos de precipitação utilizando fluidos supercriticos ainda não foram sistematicamente estudados e pouco ainda se conhece à respeito do comportamento fluidodinâmico da mistura supercrítica e seus efeitos sobre o tamanho e a forma das partículas cristalizadas, o presente trabalho tem por objetivo a proposição de um estudo da dinâmica do escoamento em condições supercríticas numa câmara SAS de precipitação de partículas, tal estudo é realizado a partir da solução de um modelo matemático proposto envolvendo as variáveis que descrevem o escoamento em tais condições. A solução do sistema de equações diferenciais parciais que modelam o processo é obtida numericamente empregando o simulador comercial ANSYS FLUENT. Quatro casos de câmaras com dimensões e sistemas de injeção distintos foram escolhidos na literatura, sendo dois casos bidimensionais e dois tridimensionais. Foi analisado como as variações das condições de operação (geometria da câmara, pressão e vazões de antissolvente) relacionam-se às tendências experimentais de tamanhos e qualidade de partículas relatadas na literatura. A comparação entre os resultados bi e tridimensionais indicam que a aproximação 2D possibilita responder questões sobre a influência de parâmetros do processo na qualidade das partículas de forma computacionalmente rápida, entretanto, a abordagem 3D revela que os padrões são mais complexos, a influência dos parâmetros é mais bem detalhada neste caso e esta abordagem deve ser preferida quando possível. Observou-se que para câmaras de menor comprimento o escoamento junto à parede inferior é mais rápido e com maiores gradientes de velocidade, o que pode explicar a formação de maiores agloremados de partículas observados experimentalmente. A identificação da fronteira do jato permitiu localizar as possíveis regiões de nucleação de partículas, o que é corroborado pelos perfis de supersatutração. Estes perfis indicaram regiões de nucleação bastante distintas ao se variar a vazão de solução na câmara de precipitação.1 CD-ROM (183 f.)Universidade Estadual de MaringáBrasilDepartamento de Engenharia QuímicaPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRCentro de TecnologiaVladimir Ferreira CabralAlmeida, Regiani Aparecida de2018-04-17T17:39:51Z2018-04-17T17:39:51Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/3642porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-10-15T18:07:08Zoai:localhost:1/3642Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:56:47.358966Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
Study of turbulent flow in capillary supercritical fluid applied to the production of nanoparticles
title Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
spellingShingle Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
Almeida, Regiani Aparecida de
Fluido supercrítico
Supersaturação.Modelagem matemática
Fluidodinâmica computacional
Brasil.
Supercritical Fluid
Supersaturation
Mathematical Modeling
Computational Fluid Dynamics
Brazil.
Engenharias
Engenharia Química
title_short Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
title_full Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
title_fullStr Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
title_full_unstemmed Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
title_sort Estudo do escoamento turbulento de fluido supercrítico em tubo capilar aplicado à produção de nanopartículas
author Almeida, Regiani Aparecida de
author_facet Almeida, Regiani Aparecida de
author_role author
dc.contributor.none.fl_str_mv Vladimir Ferreira Cabral
dc.contributor.author.fl_str_mv Almeida, Regiani Aparecida de
dc.subject.por.fl_str_mv Fluido supercrítico
Supersaturação.Modelagem matemática
Fluidodinâmica computacional
Brasil.
Supercritical Fluid
Supersaturation
Mathematical Modeling
Computational Fluid Dynamics
Brazil.
Engenharias
Engenharia Química
topic Fluido supercrítico
Supersaturação.Modelagem matemática
Fluidodinâmica computacional
Brasil.
Supercritical Fluid
Supersaturation
Mathematical Modeling
Computational Fluid Dynamics
Brazil.
Engenharias
Engenharia Química
description Processes that employ Supercritical fluid as the SAS technique or Supercritical Antisolvent using Supercritical CO2 as Antisolvent to the precipitation of particles, in micro and nanoscales, allow to process a wide variety of high quality products from the pharmaceutical and food industry. They have advantages over other recrystallization techniques to produce particles of small size with spherical shapes as precipitation heat sensitive compounds, which are desirable in many applications and easy to separate of the organic solvent. However, the guarantee of obtaining particles with beneficial biophysical characteristics and shapes is related to a combination of operating process parameters of each solute-organic solvent system under consideration. This combination of parameters is a great defiance in the process control. It is known that by varying the antisolvent and solution flow rates, operating pressure and temperature, the chamber geometry and capillary injection tube is possible to vary properties such as density and solubility in supercritical conditions of the mixture. Thus, it is feasible to enhance the control over the precipitated particles, size and shape. Indeed, the mechanisms of precipitation using supercritical fluids have not been systematically studied and a little is known about the fluid dynamic behavior of supercritical mixture and its effects on the particles, size and shape. This work proposes a study about flow dynamics in supercritical conditions, in a SAS - precipitation chamber. The research is based on the solution of a mathematical model involving the variables that describe the flow in such conditions. The system of partial and differential equations that model the process is numerically solved by employing the ANSYS FLUENT commercial code. Four cases of chambers with dimensions and different injection systems were chosen from the literature: two two-dimensional and two three-dimensional cases. It was analyzed how the variations, in the operating conditions (geometry of the chamber, pressure and flow rates of antisolvent), correlate to the trends of experimental particle size and morphology as reported in the literature. A comparison among the results has pointed out that two and three dimensional approaches allow the 2D to answer questions about the influence of the process parameters on the quality of shaped particles, with few computational efforts. However, the 3D approach has shown more complex patterns, the influence of the parameters is better detailed in this case, and this method should be selected when possible. It was observed that the fluid flows faster along the bottom wall with a greater velocity of gradients, in the shorter chambers length, and this may explain the formation of larger particles clusters experimentally observed. The tracking of the jet boundary allowed locating the possible regions of particle nucleation. This was corroborated by the supersaturation profiles that revealed very distinct nucleation regions in the precipitation chamber.
publishDate 2013
dc.date.none.fl_str_mv 2013
2018-04-17T17:39:51Z
2018-04-17T17:39:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/3642
url http://repositorio.uem.br:8080/jspui/handle/1/3642
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1813258633927983104