Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
Texto Completo: | http://repositorio.uem.br:8080/jspui/handle/1/4365 |
Resumo: | Retinopathy of prematurity is a multifactorial disease that affects the retina of premature infants. It is a major cause of blindness in children in the world. The objective was to set a logistic model to identify associated factors and to assist in predicting the diagnosis of retinopathy of prematurity. We conducted a retrospective cross-sectional study of admitted newborns in the program Mãe Canguru of the University Hospital of Maringá-PR from January 2006 to November 2015. The response variable was the diagnosis of retinopathy classified as absent or present in the newborn. Univariate analysis with the predictor variables and the categorization made by the likelihood ratio test was performed. For the multiple logistic model was verified the quality of the adjustment by Hosmer and Lemeshow test, deviance and Pearson statistics and to assess the assumptions of the model was carried out the residuals analysis and diagnosis.The ROC curve was constructed to evaluate the predictive ability of the model. In the study included 324 newborns admitted in the program Mãe Canguru, 33 (10.18%) children had retinopathy. The variables that were presented as risk factors for retinopathy multiple logistic regression were gestational age 30 weeks (OR = 3.6), birth weight 1250 grams (OR = 5.14) and Apgar score at 1 minute <7 (OR = 2.57). The Hosmer and Lemeshow test and Pearson's statistics showed evidence that the model is well fitted to the data, since the deviance of the degrees of freedom pointed underdispersion evidence. In the analysis diagnosis through observation graph of predicted vs. deviance waste variance function proved inadequate. The model discrimination ability given by the area under the ROC curve was 0.8395, and the probability of the point diagnosing infants with retinopathy and newborns without retinopathy was 0.078 with sensitivity of 0.75 and specificity of 0.79. In conclusion, the model can be used to assist in the prediction of retinopathy of prematurity predict since it presents considerable precision. Newborns that are experiencing more likely than 0.078 by logistic model require greater attention from retina specialist and neonatologists during the screening programs for the prevention of blindness caused by retinopathy |
id |
UEM-10_36a29c000d58234f267675fedffdbde7 |
---|---|
oai_identifier_str |
oai:localhost:1/4365 |
network_acronym_str |
UEM-10 |
network_name_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository_id_str |
|
spelling |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridadeModelo logísticoRetinopatia da prematuridadeBioestatística - BrasilCiências Exatas e da TerraEstatísticaRetinopathy of prematurity is a multifactorial disease that affects the retina of premature infants. It is a major cause of blindness in children in the world. The objective was to set a logistic model to identify associated factors and to assist in predicting the diagnosis of retinopathy of prematurity. We conducted a retrospective cross-sectional study of admitted newborns in the program Mãe Canguru of the University Hospital of Maringá-PR from January 2006 to November 2015. The response variable was the diagnosis of retinopathy classified as absent or present in the newborn. Univariate analysis with the predictor variables and the categorization made by the likelihood ratio test was performed. For the multiple logistic model was verified the quality of the adjustment by Hosmer and Lemeshow test, deviance and Pearson statistics and to assess the assumptions of the model was carried out the residuals analysis and diagnosis.The ROC curve was constructed to evaluate the predictive ability of the model. In the study included 324 newborns admitted in the program Mãe Canguru, 33 (10.18%) children had retinopathy. The variables that were presented as risk factors for retinopathy multiple logistic regression were gestational age 30 weeks (OR = 3.6), birth weight 1250 grams (OR = 5.14) and Apgar score at 1 minute <7 (OR = 2.57). The Hosmer and Lemeshow test and Pearson's statistics showed evidence that the model is well fitted to the data, since the deviance of the degrees of freedom pointed underdispersion evidence. In the analysis diagnosis through observation graph of predicted vs. deviance waste variance function proved inadequate. The model discrimination ability given by the area under the ROC curve was 0.8395, and the probability of the point diagnosing infants with retinopathy and newborns without retinopathy was 0.078 with sensitivity of 0.75 and specificity of 0.79. In conclusion, the model can be used to assist in the prediction of retinopathy of prematurity predict since it presents considerable precision. Newborns that are experiencing more likely than 0.078 by logistic model require greater attention from retina specialist and neonatologists during the screening programs for the prevention of blindness caused by retinopathyA retinopatia da prematuridade é uma doença multifatorial que afeta a retina dos recém-nascidos prematuros. É uma das principais causas de cegueira infantil no mundo. O objetivo deste trabalho foi de ajustar um modelo logístico para identificar os fatores associados e para predição do diagnóstico da retinopatia da prematuridade. Trata-se de estudo transversal retrospectivo dos recém-nascidos admitidos no Programa Método Mãe Canguru do Hospital Universitário de Maringá-PR no período de janeiro de 2006 a novembro de 2015. A variável resposta foi o diagnóstico da retinopatia classificada como ausente ou presente no recém-nascido. Foi realizada a análise univariada com as variáveis preditoras e feita a categorização por meio do teste da razão de verossimilhança. Para o modelo logístico múltiplo foi verificado a qualidade do ajuste pelo teste de Hosmer e Lemeshow, deviance e estatística de Pearson e para avaliar as hipóteses do modelo foi realizado a análise de resíduos e de diagnóstico. A curva ROC foi construída para avaliar a capacidade de predição do modelo. No estudo foram incluídos 324 recém-nascidos admitidos no Programa Método Mãe Canguru, 33 (10,18%) crianças apresentaram retinopatia. As variáveis preditoras que se apresentaram como fatores de risco para a retinopatia pelo modelo logístico múltiplo foram a idade gestacional 30 semanas (OR=3,6), peso ao nascer 1250 gramas (OR=5,14) e escore Apgar no 1º minuto < 7(OR=2,57). O teste de Hosmer e Lemeshow e a estatística de Pearson mostraram evidências de que o modelo está bem ajustado aos dados, já a deviance sobre os graus de liberdade apontou indícios de subdispersão. Na análise de diagnósticos, por meio da observação do gráfico do predito versus resíduos deviance, a função de variância mostrou-se inadequada. A capacidade de discriminação do modelo dada pela área da curva ROC foi de 0,8395 e a probabilidade ótima que diagnostica os recém-nascidos com retinopatia foi de 0,078 com sensibilidade de 0,75 e especificidade de 0,79. Concluiu-se que, o modelo pode ser usado para predição da retinopatia uma vez que apresenta uma discriminação considerável. Recém-nascidos que apresentarem uma probabilidade maior que 0,078 através do modelo logístico necessitam de maior atenção dos retinólogos e neonatologistas durante os programas de triagem para a prevenção da cegueira causada pela retinopatia52 fUniversidade Estadual de MaringáBrasilDepartamento de EstatísticaPrograma de Pós-Graduação em BioestatísticaUEMMaringá, PRCentro de Ciências ExatasTaqueco Teruya Uchimura - UEMMariana Ragassi Urbano - UELIsolde T. S. Previdelli - UEMPereira, Rafaela2018-04-18T20:15:55Z2018-04-18T20:15:55Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/4365porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-10-19T17:42:16Zoai:localhost:1/4365Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:57:31.598351Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade |
title |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade |
spellingShingle |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade Pereira, Rafaela Modelo logístico Retinopatia da prematuridade Bioestatística - Brasil Ciências Exatas e da Terra Estatística |
title_short |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade |
title_full |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade |
title_fullStr |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade |
title_full_unstemmed |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade |
title_sort |
Modelo logístico para identificar fatores associados e predição da retinopatia da prematuridade |
author |
Pereira, Rafaela |
author_facet |
Pereira, Rafaela |
author_role |
author |
dc.contributor.none.fl_str_mv |
Taqueco Teruya Uchimura - UEM Mariana Ragassi Urbano - UEL Isolde T. S. Previdelli - UEM |
dc.contributor.author.fl_str_mv |
Pereira, Rafaela |
dc.subject.por.fl_str_mv |
Modelo logístico Retinopatia da prematuridade Bioestatística - Brasil Ciências Exatas e da Terra Estatística |
topic |
Modelo logístico Retinopatia da prematuridade Bioestatística - Brasil Ciências Exatas e da Terra Estatística |
description |
Retinopathy of prematurity is a multifactorial disease that affects the retina of premature infants. It is a major cause of blindness in children in the world. The objective was to set a logistic model to identify associated factors and to assist in predicting the diagnosis of retinopathy of prematurity. We conducted a retrospective cross-sectional study of admitted newborns in the program Mãe Canguru of the University Hospital of Maringá-PR from January 2006 to November 2015. The response variable was the diagnosis of retinopathy classified as absent or present in the newborn. Univariate analysis with the predictor variables and the categorization made by the likelihood ratio test was performed. For the multiple logistic model was verified the quality of the adjustment by Hosmer and Lemeshow test, deviance and Pearson statistics and to assess the assumptions of the model was carried out the residuals analysis and diagnosis.The ROC curve was constructed to evaluate the predictive ability of the model. In the study included 324 newborns admitted in the program Mãe Canguru, 33 (10.18%) children had retinopathy. The variables that were presented as risk factors for retinopathy multiple logistic regression were gestational age 30 weeks (OR = 3.6), birth weight 1250 grams (OR = 5.14) and Apgar score at 1 minute <7 (OR = 2.57). The Hosmer and Lemeshow test and Pearson's statistics showed evidence that the model is well fitted to the data, since the deviance of the degrees of freedom pointed underdispersion evidence. In the analysis diagnosis through observation graph of predicted vs. deviance waste variance function proved inadequate. The model discrimination ability given by the area under the ROC curve was 0.8395, and the probability of the point diagnosing infants with retinopathy and newborns without retinopathy was 0.078 with sensitivity of 0.75 and specificity of 0.79. In conclusion, the model can be used to assist in the prediction of retinopathy of prematurity predict since it presents considerable precision. Newborns that are experiencing more likely than 0.078 by logistic model require greater attention from retina specialist and neonatologists during the screening programs for the prevention of blindness caused by retinopathy |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2018-04-18T20:15:55Z 2018-04-18T20:15:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.uem.br:8080/jspui/handle/1/4365 |
url |
http://repositorio.uem.br:8080/jspui/handle/1/4365 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Departamento de Estatística Programa de Pós-Graduação em Bioestatística UEM Maringá, PR Centro de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Departamento de Estatística Programa de Pós-Graduação em Bioestatística UEM Maringá, PR Centro de Ciências Exatas |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
collection |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
|
_version_ |
1813258671351660544 |