Nitrificação e desnitrificação de efluentes líquidos
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
Texto Completo: | http://repositorio.uem.br:8080/jspui/handle/1/3789 |
Resumo: | In the biological treatment of wastewaters, there are interactions of several mechanisms, some of them happen simultaneously and others in series. In the present work, the system of biological treatment was based on the oxidation of organic and nitrogen matter (N-NH4+) of synthetic effluent simulating domestic waste. For the nitrogen matter removal, the nitrification and denitrification processes were used, in series. The study was developed under continuous system and the performance of the nitrification and denitrification processes was evaluated, as well as, the organic matter removal during the three experiments. In the curse of the three experiments, the performance of the nitrification process was evaluated using a three-phase fuidized bed bioreactor. The support used for the development of the biofilm was cylindrical PVC particles, with specific mass of 1,37g/cm3, equivalent diameter of 2,94mm and spherecity of 0,81. For the experiment 1, the three-phase fluidized bed bioreactor (nitrification) operated with 1-hour-hydraulic retention time. For the denitrification tank the hydraulic retention time was 5 hours. Dissolved oxygen and pH was monitored during the nitrification. The synthetic effluent used along this experiment provided concentrations of 180 - 200 mg/L of COD, 25 - 30 mg/L of N-NH4+ and 6 - 8 mg/L of total phosphorous. In the course of experiment 2 the fluidized bed operated with hydraulic retention time of 1 and 4 hours; the denitrification tank operated with hydraulic retention time of 5 and 20 hours. The synthetic effluent used for this experiment provided concentrations of 180 - 230 mg/L, 25 - 54 mg/L of N-NH4+ and 12 - 13 mg/L of total phosphorous, and macronutrients was added for the good performance of the microorganisms. Dissolved oxygen, pH and temperature was monitored for the nitrification process. During the third experiment, the three-phase fluidized bed bioreactor operated with 4-hour hydraulic retention time. For the denitrification, a completely mixed reactor was used with hydraulic retention time of 4 hours and 33 minutes. The synthetic effluent used for this experiment was similar to experiment 2, save for the concentration of N-NH4+ that was 25 - 30 mg/L. For the nitrification process, pH and dissolved oxygen was monitored. For the denitrification process, only dissolved oxygen and extra carbon source quantity were monitored, which provided concentrations of 41 - 292 mg/L of DQO for the process. The ammonium, nitrite and nitrate content, and protein and polysacharides content attached to the support (fluidized bed) were accomplished in the course of all experiments to attend and evaluation of the processes. The results indicated that the nitrification process was efficient only for 4-hour hydraulic retention time, reaching efficiencies of about 100%. The best results related to the efficiency of the denitrification process was obtained when the carbon source was supplemented to the process, reaching efficiencies of nitrite and nitrate removal of about 100%. The increment of hydraulic retention time in the course of the experiments don't end in better results of DQO removal. The results indicated efficiency of DQO removal of 86,32% to 97,99%. |
id |
UEM-10_3d38939b04e4694cc3a6d21b6038ef44 |
---|---|
oai_identifier_str |
oai:localhost:1/3789 |
network_acronym_str |
UEM-10 |
network_name_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository_id_str |
|
spelling |
Nitrificação e desnitrificação de efluentes líquidosTratamento biológico de efluentesEsgoto domésticoBioreator de leito fluidizado trifásicoProcesso de nitrificação e desnitrificaçãoEfluentesNitrificaçãoBrasil.EngenhariasEngenharia QuímicaIn the biological treatment of wastewaters, there are interactions of several mechanisms, some of them happen simultaneously and others in series. In the present work, the system of biological treatment was based on the oxidation of organic and nitrogen matter (N-NH4+) of synthetic effluent simulating domestic waste. For the nitrogen matter removal, the nitrification and denitrification processes were used, in series. The study was developed under continuous system and the performance of the nitrification and denitrification processes was evaluated, as well as, the organic matter removal during the three experiments. In the curse of the three experiments, the performance of the nitrification process was evaluated using a three-phase fuidized bed bioreactor. The support used for the development of the biofilm was cylindrical PVC particles, with specific mass of 1,37g/cm3, equivalent diameter of 2,94mm and spherecity of 0,81. For the experiment 1, the three-phase fluidized bed bioreactor (nitrification) operated with 1-hour-hydraulic retention time. For the denitrification tank the hydraulic retention time was 5 hours. Dissolved oxygen and pH was monitored during the nitrification. The synthetic effluent used along this experiment provided concentrations of 180 - 200 mg/L of COD, 25 - 30 mg/L of N-NH4+ and 6 - 8 mg/L of total phosphorous. In the course of experiment 2 the fluidized bed operated with hydraulic retention time of 1 and 4 hours; the denitrification tank operated with hydraulic retention time of 5 and 20 hours. The synthetic effluent used for this experiment provided concentrations of 180 - 230 mg/L, 25 - 54 mg/L of N-NH4+ and 12 - 13 mg/L of total phosphorous, and macronutrients was added for the good performance of the microorganisms. Dissolved oxygen, pH and temperature was monitored for the nitrification process. During the third experiment, the three-phase fluidized bed bioreactor operated with 4-hour hydraulic retention time. For the denitrification, a completely mixed reactor was used with hydraulic retention time of 4 hours and 33 minutes. The synthetic effluent used for this experiment was similar to experiment 2, save for the concentration of N-NH4+ that was 25 - 30 mg/L. For the nitrification process, pH and dissolved oxygen was monitored. For the denitrification process, only dissolved oxygen and extra carbon source quantity were monitored, which provided concentrations of 41 - 292 mg/L of DQO for the process. The ammonium, nitrite and nitrate content, and protein and polysacharides content attached to the support (fluidized bed) were accomplished in the course of all experiments to attend and evaluation of the processes. The results indicated that the nitrification process was efficient only for 4-hour hydraulic retention time, reaching efficiencies of about 100%. The best results related to the efficiency of the denitrification process was obtained when the carbon source was supplemented to the process, reaching efficiencies of nitrite and nitrate removal of about 100%. The increment of hydraulic retention time in the course of the experiments don't end in better results of DQO removal. The results indicated efficiency of DQO removal of 86,32% to 97,99%.No tratamento biológico de efluentes há uma interação de diversos mecanismos, alguns ocorrendo simultaneamente e outros sequencialmente. No presente trabalho, o sistema de tratamento biológico fundamentou-se na oxidação da matéria orgânica e na remoção de matéria nitrogenada (N-NH+4) de efluente sintético simulando esgoto doméstico. Para a remoção de matéria nitrogenada foram empregados os processos de nitrificação e desnitrificação, em sequência. O estudo foi desenvolvido em regime contínuo e avaliou-se o desempenho dos processos de nitrificação e de desnitrificação, bem como, a remoção de matéria orgânica ao longo de 3 ensaios. Durante todos os ensaios, o desempenho do processo de nitrificação foi avaliado utilizando um biorreator de leito fluidizado trifásico. As partículas suporte utilizadas para o desenvolvimento do biofilme foram partículas de P.V.C., de forma cilíndrica, massa específica 1,37 g/cm3, diâmetro equivalente 2,94 mm, e esfericidade 0,81. Para o ensaio 1, o biorreator de leito fluidizado trifásico (nitrificação) operou com tempo de retenção hidráulica de 1 hora. Para o tanque de desnitrificação o tempo de retenção hidráulica foi de 5 horas. Foram monitorados, durante a nitrificação, o pH e o oxigênio dissolvido. O efluente sintético utilizado ao longo deste ensaio fornecia concentrações de 180 - 200 mg/L de DQO, 25 - 30 mg/L de N-NH+4 , e 6 - 8 mgfL de fósforo total. Durante o ensaio 2 o leito fluidizado operou com tempos de retenção hidráulica de 1 e de 4 horas; o tanque de desnitrificação operou com tempos de retenção hidráulica de 5 e 20 horas, O efluente sintético utilizado para este ensaio fornecia concentrações de 180 - 230 mg/L de DQO, 25 - 54 mgIL de N-NH+4, 12 - 13 mg/L de fósforo total, e ainda foi adicionado macronutrientes para o bom desempenho dos microrganismos. Foram monitorados o pH, oxigênio dissolvido e temperatura para o processo de nitrificação. Ao longo do 3 ensaio, o biorreator de leito fluidizado trifásico operou com tempo de retenção hidráulica de 4 horas. Para o processo de desnitrificação, foi utilizado reator tipo mistura completa, com tempo de retenção hidráulica de 4 horas e 33 minutos, O efluente sintético utilizado para este ensaio foi semelhante ao ensaio 2, à exceção da concentração de N-NH4, que foi de 25 a 30 mgIL. Foram monitorados para o processo de nitrificação o pH, o oxigênio dissolvido e a temperatura. Para o processo de desnitrificação, foram monitorados apenas o oxigênio dissolvido e a quantidade de fonte suplementar de carbono, na qual fornecia ao processo variações de concentrações de 41 a 292 mgIL de DQO. As análises de amônia, nitrito e nitrato foram realizadas ao longo de todos os ensaios para acompanhamento e avaliação dos processos, bem como os teores de proteínas e polissacarídeos aderidos ao suporte (leito fluidizado). Os resultados indicaram que o processo de nitrificação foi eficiente apenas para tempo de retenção hidráulica de 4 horas, alcançando eficiências de até 100 %. Os melhores resultados relativos à eficiência do processo de desnitrificação foram obtidos quando foi suplementada fonte de carbono ao processo, alcançando eficiências de remoção de nitritos e nitratos de até 100 %. O aumento do tempo de retenção hidráulica ao longo dos experimentos não levou a elevações apreciáveis na eficiência de remoção de DQO. Os resultados indicaram eficiências de remoção de DQO de 86,32 % a 97,99 %.120 fUniversidade Estadual de MaringáBrasilPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRDepartamento de Engenharia QuímicaCélia Regina Granhen TavaresEdvard Elias de Souza Filho - UELPaulo Fernando Soares - UEMRocha, Renata Ribeiro de Araújo2018-04-17T17:43:55Z2018-04-17T17:43:55Z1997info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://repositorio.uem.br:8080/jspui/handle/1/3789porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2024-03-25T19:05:58Zoai:localhost:1/3789Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:56:56.651298Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Nitrificação e desnitrificação de efluentes líquidos |
title |
Nitrificação e desnitrificação de efluentes líquidos |
spellingShingle |
Nitrificação e desnitrificação de efluentes líquidos Rocha, Renata Ribeiro de Araújo Tratamento biológico de efluentes Esgoto doméstico Bioreator de leito fluidizado trifásico Processo de nitrificação e desnitrificação Efluentes Nitrificação Brasil. Engenharias Engenharia Química |
title_short |
Nitrificação e desnitrificação de efluentes líquidos |
title_full |
Nitrificação e desnitrificação de efluentes líquidos |
title_fullStr |
Nitrificação e desnitrificação de efluentes líquidos |
title_full_unstemmed |
Nitrificação e desnitrificação de efluentes líquidos |
title_sort |
Nitrificação e desnitrificação de efluentes líquidos |
author |
Rocha, Renata Ribeiro de Araújo |
author_facet |
Rocha, Renata Ribeiro de Araújo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Célia Regina Granhen Tavares Edvard Elias de Souza Filho - UEL Paulo Fernando Soares - UEM |
dc.contributor.author.fl_str_mv |
Rocha, Renata Ribeiro de Araújo |
dc.subject.por.fl_str_mv |
Tratamento biológico de efluentes Esgoto doméstico Bioreator de leito fluidizado trifásico Processo de nitrificação e desnitrificação Efluentes Nitrificação Brasil. Engenharias Engenharia Química |
topic |
Tratamento biológico de efluentes Esgoto doméstico Bioreator de leito fluidizado trifásico Processo de nitrificação e desnitrificação Efluentes Nitrificação Brasil. Engenharias Engenharia Química |
description |
In the biological treatment of wastewaters, there are interactions of several mechanisms, some of them happen simultaneously and others in series. In the present work, the system of biological treatment was based on the oxidation of organic and nitrogen matter (N-NH4+) of synthetic effluent simulating domestic waste. For the nitrogen matter removal, the nitrification and denitrification processes were used, in series. The study was developed under continuous system and the performance of the nitrification and denitrification processes was evaluated, as well as, the organic matter removal during the three experiments. In the curse of the three experiments, the performance of the nitrification process was evaluated using a three-phase fuidized bed bioreactor. The support used for the development of the biofilm was cylindrical PVC particles, with specific mass of 1,37g/cm3, equivalent diameter of 2,94mm and spherecity of 0,81. For the experiment 1, the three-phase fluidized bed bioreactor (nitrification) operated with 1-hour-hydraulic retention time. For the denitrification tank the hydraulic retention time was 5 hours. Dissolved oxygen and pH was monitored during the nitrification. The synthetic effluent used along this experiment provided concentrations of 180 - 200 mg/L of COD, 25 - 30 mg/L of N-NH4+ and 6 - 8 mg/L of total phosphorous. In the course of experiment 2 the fluidized bed operated with hydraulic retention time of 1 and 4 hours; the denitrification tank operated with hydraulic retention time of 5 and 20 hours. The synthetic effluent used for this experiment provided concentrations of 180 - 230 mg/L, 25 - 54 mg/L of N-NH4+ and 12 - 13 mg/L of total phosphorous, and macronutrients was added for the good performance of the microorganisms. Dissolved oxygen, pH and temperature was monitored for the nitrification process. During the third experiment, the three-phase fluidized bed bioreactor operated with 4-hour hydraulic retention time. For the denitrification, a completely mixed reactor was used with hydraulic retention time of 4 hours and 33 minutes. The synthetic effluent used for this experiment was similar to experiment 2, save for the concentration of N-NH4+ that was 25 - 30 mg/L. For the nitrification process, pH and dissolved oxygen was monitored. For the denitrification process, only dissolved oxygen and extra carbon source quantity were monitored, which provided concentrations of 41 - 292 mg/L of DQO for the process. The ammonium, nitrite and nitrate content, and protein and polysacharides content attached to the support (fluidized bed) were accomplished in the course of all experiments to attend and evaluation of the processes. The results indicated that the nitrification process was efficient only for 4-hour hydraulic retention time, reaching efficiencies of about 100%. The best results related to the efficiency of the denitrification process was obtained when the carbon source was supplemented to the process, reaching efficiencies of nitrite and nitrate removal of about 100%. The increment of hydraulic retention time in the course of the experiments don't end in better results of DQO removal. The results indicated efficiency of DQO removal of 86,32% to 97,99%. |
publishDate |
1997 |
dc.date.none.fl_str_mv |
1997 2018-04-17T17:43:55Z 2018-04-17T17:43:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.uem.br:8080/jspui/handle/1/3789 |
url |
http://repositorio.uem.br:8080/jspui/handle/1/3789 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Programa de Pós-Graduação em Engenharia Química UEM Maringá, PR Departamento de Engenharia Química |
publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Programa de Pós-Graduação em Engenharia Química UEM Maringá, PR Departamento de Engenharia Química |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
collection |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
|
_version_ |
1813258666835443712 |