Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
Texto Completo: | http://repositorio.uem.br:8080/jspui/handle/1/1586 |
Resumo: | The growth rate is linked, among other factors, to muscle deposition. The muscle deposition is based on the balance between protein synthesis and degradation, which are partially coordinated by dietary nutrients, hormones related to growth, and complex metabolic pathways involved in muscle and lysosomal degradation. The bird's performance is also affected by environmental conditions to which these animals are exposed. Therefore, the main objective of this study was to evaluate the effect of acute heat stress and methionine supplementation on performance, gene expression, and the redox state in birds, broilers, and quail. Broilers from 1 to 21 days of age and 22 to 42 days of age were divided into three treatments regarding methionine supplementation: without methionine supplementation (MD), recommended level of methionine (DL1), and excess methionine supplementation (DL2). The animals were kept under thermal comfort or exposed to acute heat stress (38ºC for 24 hours, starting at 20 or 41 days of age, depending on the assessed experimental phase). In this experiment, we evaluated, among other parameters, animal performance, some markers of oxidative stress, and the gene expression of the following genes: uncoupling protein (UCP), betaine-homocysteine methyltransferase (BHMT), cystathionine β synthase (CBS), glutathione synthetase (GSS), glutathione peroxidase 7 (GPx 7), insulin-like growth factor 1(IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase regulatory subunit 1 (PI3KR1), atrogin 1, and cathepsin L2 (CTSL2). We observed that heat stress increased the body temperature and the water intake in broilers at both ages. The heat stress also decreased the ration intake and the body weight gain in the animals. The methionine supplementation also reduced the ration intake, but it increased the body weight gain. We observed that heat stress decreased both the activity of the enzyme creatinine kinase (CK) and the uric acid levels, and increased the activity of the enzyme alanine aminotransferase (ALT). The methionine supplementation decreased the activity of the enzymes aspartate aminotransferase (AST) and ALT, and increased the activity of CK and the uric acid plasmatic concentration. A greater expression of the genes GSS, CBS, GPX 7, atrogin 1, and CTSL2 were observed in birds exposed to heat stress. The methionine supplementation resulted in a lower gene expression of CTSL2, atrogin 1, BHMT, and UCP and also caused a greater gene expression of IGF-I, GHR, GSS, CBS, and GPx 7. The gene expression of BHMT (P<.0001), CBS (P<.0001), GSS (P=0.0036), and GPx 7 (P=0.0375) were affected by the interaction between ambience × diet. A greater BHMT gene expression was observed in animals kept under thermal comfort and fed with the WM diet. Birds kept under heat stress and fed the DL1 and DL2 diets had a greater CBS, GSS, and GPx7 gene expression. In the experiment with quail, we did not evaluate the DL2 diet; however, the results of IGF-I, GHR, and UCP gene expression, animal performance, and the other evaluated plasmatic parameters were similar to those observed in the broiler experiment. In the experiment with quail, we also observed a significantly greater H2O2 production by the animal kept under heat stress for 24 hours, and in animals receiving a diet without methionine supplementation. Higher glutathione (GSH) content was observed in animals that were fed a diet with methionine supplementation and in animals kept under thermal comfort. A greater TBARS level and activity of the catalase enzyme were found in animals kept under heat stress and fed a diet without methionine. A greater glutathione peroxidase activity was observed in animals kept under heat stress and fed a diet with methionine supplementation. All of the results obtained in this study suggest that under thermal comfort, methionine supplementation reduced the damage caused by ROS, which may be related to the increase in the expression and activity of antioxidants. Our results reveal that heat stress increases the body temperature, induces oxidative stress, and induces greater protein proteolysis; methionine supplementation can also attenuate the effects of stress, thereby contributing to a greater expression and activity of elements related to antioxidant activity. This may stimulate protein deposition, which not only ensures greater gene expression related to synthesis, but also ensures the increase in gene expression related to protein degradation. |
id |
UEM-10_6bf2d6ec7acac9aba7866809e700c970 |
---|---|
oai_identifier_str |
oai:localhost:1/1586 |
network_acronym_str |
UEM-10 |
network_name_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository_id_str |
|
spelling |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmicoCodornaAntioxidanteMetioninaEstresse oxidativoEstresse térmicoFrango de corteDeposição proteicaNutrigênomicaBrasil.QuailAntioxidantMethionineOxidative stressThermal stressBroilerProtein depositionNutrigenomicsBrazil.Ciências AgráriasZootecniaThe growth rate is linked, among other factors, to muscle deposition. The muscle deposition is based on the balance between protein synthesis and degradation, which are partially coordinated by dietary nutrients, hormones related to growth, and complex metabolic pathways involved in muscle and lysosomal degradation. The bird's performance is also affected by environmental conditions to which these animals are exposed. Therefore, the main objective of this study was to evaluate the effect of acute heat stress and methionine supplementation on performance, gene expression, and the redox state in birds, broilers, and quail. Broilers from 1 to 21 days of age and 22 to 42 days of age were divided into three treatments regarding methionine supplementation: without methionine supplementation (MD), recommended level of methionine (DL1), and excess methionine supplementation (DL2). The animals were kept under thermal comfort or exposed to acute heat stress (38ºC for 24 hours, starting at 20 or 41 days of age, depending on the assessed experimental phase). In this experiment, we evaluated, among other parameters, animal performance, some markers of oxidative stress, and the gene expression of the following genes: uncoupling protein (UCP), betaine-homocysteine methyltransferase (BHMT), cystathionine β synthase (CBS), glutathione synthetase (GSS), glutathione peroxidase 7 (GPx 7), insulin-like growth factor 1(IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase regulatory subunit 1 (PI3KR1), atrogin 1, and cathepsin L2 (CTSL2). We observed that heat stress increased the body temperature and the water intake in broilers at both ages. The heat stress also decreased the ration intake and the body weight gain in the animals. The methionine supplementation also reduced the ration intake, but it increased the body weight gain. We observed that heat stress decreased both the activity of the enzyme creatinine kinase (CK) and the uric acid levels, and increased the activity of the enzyme alanine aminotransferase (ALT). The methionine supplementation decreased the activity of the enzymes aspartate aminotransferase (AST) and ALT, and increased the activity of CK and the uric acid plasmatic concentration. A greater expression of the genes GSS, CBS, GPX 7, atrogin 1, and CTSL2 were observed in birds exposed to heat stress. The methionine supplementation resulted in a lower gene expression of CTSL2, atrogin 1, BHMT, and UCP and also caused a greater gene expression of IGF-I, GHR, GSS, CBS, and GPx 7. The gene expression of BHMT (P<.0001), CBS (P<.0001), GSS (P=0.0036), and GPx 7 (P=0.0375) were affected by the interaction between ambience × diet. A greater BHMT gene expression was observed in animals kept under thermal comfort and fed with the WM diet. Birds kept under heat stress and fed the DL1 and DL2 diets had a greater CBS, GSS, and GPx7 gene expression. In the experiment with quail, we did not evaluate the DL2 diet; however, the results of IGF-I, GHR, and UCP gene expression, animal performance, and the other evaluated plasmatic parameters were similar to those observed in the broiler experiment. In the experiment with quail, we also observed a significantly greater H2O2 production by the animal kept under heat stress for 24 hours, and in animals receiving a diet without methionine supplementation. Higher glutathione (GSH) content was observed in animals that were fed a diet with methionine supplementation and in animals kept under thermal comfort. A greater TBARS level and activity of the catalase enzyme were found in animals kept under heat stress and fed a diet without methionine. A greater glutathione peroxidase activity was observed in animals kept under heat stress and fed a diet with methionine supplementation. All of the results obtained in this study suggest that under thermal comfort, methionine supplementation reduced the damage caused by ROS, which may be related to the increase in the expression and activity of antioxidants. Our results reveal that heat stress increases the body temperature, induces oxidative stress, and induces greater protein proteolysis; methionine supplementation can also attenuate the effects of stress, thereby contributing to a greater expression and activity of elements related to antioxidant activity. This may stimulate protein deposition, which not only ensures greater gene expression related to synthesis, but also ensures the increase in gene expression related to protein degradation.A taxa de crescimento é dependente, entre outros fatores, da deposição de massa muscular. Esta por sua vez, é dada pelo balanço entre a síntese e degradação protéica, coordenadas em parte pelos nutrientes da dieta, por hormônios ligados ao crescimento, e por complexas rotas metabólicas envolvidas na degradação muscular e lisossomal. O desempenho das aves também é afetados pelas condições ambientais a que estes animais são expostos. Sendo assim, este trabalho teve como principal objetivo avaliar o efeito do estresse térmico agudo e da suplementação de metionina sobre o desempenho, expressão gênica, e estado redox em aves: frangos e codornas. Para isto, frangos de corte de 1-21 e de 22-42 dias de idade foram divididos em três tratamentos referentes à suplementação de metionina; sem suplementação de metionina, nível recomendado de metionina (DL1), e suplementação em excesso de metionina (DL2). Os animais foram mantidos em conforto térmico ou expostos ao estresse térmico agudo (38ºC por 24 horas começando aos 20 ou aos 41 dias de idade, dependendo da fase experimental avaliada). Nestes experimentos, foram avaliados, entre outros fatores, o desempenho, alguns marcadores do estresse oxidativo, e a expressão dos genes: proteína desacopladora (UCP), betaina homocisteína metiltransferase (BHMT), cistationina β sintase (CBS), glutationa sintetase (GSS), glutationa peroxidase (GPx 7), fator de crescimento semelhante à insulina I (IGF-I), receptor do hormônio do crescimento (GHR), fosfatidilinositol 3-quinase, subunidade reguladora 1 (PI3KR1), atrogina 1, e catepsina L2 (CTSL2). Para a avaliação das codornas, estes animais foram divididos em dois tratamentos referentes à suplementação de metionina: sem suplementação de metionina, ou nível recomendado de metionina. Os animais foram mantidos em conforto térmico ou expostos ao estresse térmico agudo de 38ºC por 24 horas. Observamos que o estresse térmico aumentou a temperatura corporal, e o consumo de água nos frangos de ambas as idades. O estresse térmico também reduziu consumo de ração e o ganho de peso dos animais. A suplementação de metionina, por sua vez, também reduziu consumo de ração, entretanto, aumentou o ganho de peso. Observamos que o estresse térmico diminuiu a atividade da enzima creatina quinase (CK), e os níveis de ácido úrico, e aumentou a atividade da enzima alanina aminotransferase (ALT), e a concentração de creatinina. A suplementação de metionina reduziu a atividade das enzimas aspartato aminotransferase (AST) e ALT, e aumentou a atividade da CK e a concentração de ácido úrico plasmático. Maior expressão dos genes GSS, CBS, GPX 7, atrogina-1, e CTSL2 foi observada em aves expostas ao estresse térmico. Já a suplementação de metionina foi responsável por menor expressão dos genes CTSL2, atrogina-1, BHMT, e UCP, e maior expressão de IGF-I, GHR, GSS, CBS, e GPx 7. A expressão dos genes BHMT (P<.0001), CBS (P<.0001), GSS (P=0.0036), e GPx7 (P=0.0375) foi afetada pela interação ambiente x dieta. Maior expressão do gene BHMT foi observada em animais do conforto térmico alimentados com dieta SM. Aves do estresse, recebendo dietas DL1 e DL2 apresentaram maior expressão de CBS, GSS e GPx 7. No experimento com codornas, não foi avaliado a dieta DL2, entretanto os resultados de expressão dos genes IGF-I, GHR, e UCP, os resultados de desempenho, e dos parâmetros plasmáticos avaliados foram semelhantes aos observados nos experimentos com frangos. No experimento com codorna, também observamos maior produção significativa de peróxido de hidrogênio (H2O2) em animais que foram submetidos ao estresse térmico por 24 horas, e em animais recebendo dieta sem suplementação de metionina. Maior quantidade de glutationa (GSH) foi observada em animais recebendo dieta com suplementação de metionina e em animais que permaneceram em conforto térmico. Maior nível de substâncias reativas ao ácido tiobarbitúrico (TBARS) e maior atividade da enzima catalase foram observados em animais que foram submetidos a estresse térmico e alimentados com dieta sem inclusão de metionina. Maior atividade da glutationa peroxidase foi observada em animais submetidos ao estresse térmico consumindo dieta com suplementação de metionina. A análise dos nossos resultados de forma conjunta, leva à conclusão de que o estresse térmico aumenta a temperatura corporal, e induz o estresse oxidativo e maior proteólise; e que a suplementação de metionina pode atenuar os efeitos do estresse, contribuindo para maior expressão e atividade de elementos relacionados à atividade antioxidante, e pode estimular a deposição protéica, não apenas por garantir maior expressão de genes relacionados à síntese, mas também, menor expressão dos genes relacionados à degradação.xvii, 124 fUniversidade Estadual de MaringáBrasilPrograma de Pós-Graduação em ZootecniaUEMMaringá, PRCentro de Ciências AgráriasEliane GasparinoAlice Eiko Murakami - UEMSimara Márcia Marcato - UEMSimone Eliza Facioni Guimarães - UFVElias Nunes Martins - UFVDel Vesco, Ana Paula2018-04-06T17:13:41Z2018-04-06T17:13:41Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/1586porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-04-06T17:13:41Zoai:localhost:1/1586Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:54:33.357442Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico |
title |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico |
spellingShingle |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico Del Vesco, Ana Paula Codorna Antioxidante Metionina Estresse oxidativo Estresse térmico Frango de corte Deposição proteica Nutrigênomica Brasil. Quail Antioxidant Methionine Oxidative stress Thermal stress Broiler Protein deposition Nutrigenomics Brazil. Ciências Agrárias Zootecnia |
title_short |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico |
title_full |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico |
title_fullStr |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico |
title_full_unstemmed |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico |
title_sort |
Mecanismos moleculares relacionados à deposição protéica e ao estado redox de aves alimentadas com DL-metionina e submetidas ao estresse térmico |
author |
Del Vesco, Ana Paula |
author_facet |
Del Vesco, Ana Paula |
author_role |
author |
dc.contributor.none.fl_str_mv |
Eliane Gasparino Alice Eiko Murakami - UEM Simara Márcia Marcato - UEM Simone Eliza Facioni Guimarães - UFV Elias Nunes Martins - UFV |
dc.contributor.author.fl_str_mv |
Del Vesco, Ana Paula |
dc.subject.por.fl_str_mv |
Codorna Antioxidante Metionina Estresse oxidativo Estresse térmico Frango de corte Deposição proteica Nutrigênomica Brasil. Quail Antioxidant Methionine Oxidative stress Thermal stress Broiler Protein deposition Nutrigenomics Brazil. Ciências Agrárias Zootecnia |
topic |
Codorna Antioxidante Metionina Estresse oxidativo Estresse térmico Frango de corte Deposição proteica Nutrigênomica Brasil. Quail Antioxidant Methionine Oxidative stress Thermal stress Broiler Protein deposition Nutrigenomics Brazil. Ciências Agrárias Zootecnia |
description |
The growth rate is linked, among other factors, to muscle deposition. The muscle deposition is based on the balance between protein synthesis and degradation, which are partially coordinated by dietary nutrients, hormones related to growth, and complex metabolic pathways involved in muscle and lysosomal degradation. The bird's performance is also affected by environmental conditions to which these animals are exposed. Therefore, the main objective of this study was to evaluate the effect of acute heat stress and methionine supplementation on performance, gene expression, and the redox state in birds, broilers, and quail. Broilers from 1 to 21 days of age and 22 to 42 days of age were divided into three treatments regarding methionine supplementation: without methionine supplementation (MD), recommended level of methionine (DL1), and excess methionine supplementation (DL2). The animals were kept under thermal comfort or exposed to acute heat stress (38ºC for 24 hours, starting at 20 or 41 days of age, depending on the assessed experimental phase). In this experiment, we evaluated, among other parameters, animal performance, some markers of oxidative stress, and the gene expression of the following genes: uncoupling protein (UCP), betaine-homocysteine methyltransferase (BHMT), cystathionine β synthase (CBS), glutathione synthetase (GSS), glutathione peroxidase 7 (GPx 7), insulin-like growth factor 1(IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase regulatory subunit 1 (PI3KR1), atrogin 1, and cathepsin L2 (CTSL2). We observed that heat stress increased the body temperature and the water intake in broilers at both ages. The heat stress also decreased the ration intake and the body weight gain in the animals. The methionine supplementation also reduced the ration intake, but it increased the body weight gain. We observed that heat stress decreased both the activity of the enzyme creatinine kinase (CK) and the uric acid levels, and increased the activity of the enzyme alanine aminotransferase (ALT). The methionine supplementation decreased the activity of the enzymes aspartate aminotransferase (AST) and ALT, and increased the activity of CK and the uric acid plasmatic concentration. A greater expression of the genes GSS, CBS, GPX 7, atrogin 1, and CTSL2 were observed in birds exposed to heat stress. The methionine supplementation resulted in a lower gene expression of CTSL2, atrogin 1, BHMT, and UCP and also caused a greater gene expression of IGF-I, GHR, GSS, CBS, and GPx 7. The gene expression of BHMT (P<.0001), CBS (P<.0001), GSS (P=0.0036), and GPx 7 (P=0.0375) were affected by the interaction between ambience × diet. A greater BHMT gene expression was observed in animals kept under thermal comfort and fed with the WM diet. Birds kept under heat stress and fed the DL1 and DL2 diets had a greater CBS, GSS, and GPx7 gene expression. In the experiment with quail, we did not evaluate the DL2 diet; however, the results of IGF-I, GHR, and UCP gene expression, animal performance, and the other evaluated plasmatic parameters were similar to those observed in the broiler experiment. In the experiment with quail, we also observed a significantly greater H2O2 production by the animal kept under heat stress for 24 hours, and in animals receiving a diet without methionine supplementation. Higher glutathione (GSH) content was observed in animals that were fed a diet with methionine supplementation and in animals kept under thermal comfort. A greater TBARS level and activity of the catalase enzyme were found in animals kept under heat stress and fed a diet without methionine. A greater glutathione peroxidase activity was observed in animals kept under heat stress and fed a diet with methionine supplementation. All of the results obtained in this study suggest that under thermal comfort, methionine supplementation reduced the damage caused by ROS, which may be related to the increase in the expression and activity of antioxidants. Our results reveal that heat stress increases the body temperature, induces oxidative stress, and induces greater protein proteolysis; methionine supplementation can also attenuate the effects of stress, thereby contributing to a greater expression and activity of elements related to antioxidant activity. This may stimulate protein deposition, which not only ensures greater gene expression related to synthesis, but also ensures the increase in gene expression related to protein degradation. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2018-04-06T17:13:41Z 2018-04-06T17:13:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.uem.br:8080/jspui/handle/1/1586 |
url |
http://repositorio.uem.br:8080/jspui/handle/1/1586 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Programa de Pós-Graduação em Zootecnia UEM Maringá, PR Centro de Ciências Agrárias |
publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Programa de Pós-Graduação em Zootecnia UEM Maringá, PR Centro de Ciências Agrárias |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
collection |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
|
_version_ |
1813258642447663104 |