Estudo da dessorção seletiva do corante reativo em carvão ativado

Detalhes bibliográficos
Autor(a) principal: Carvalho, Dayane Samara de
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
Texto Completo: http://repositorio.uem.br:8080/jspui/handle/1/3741
Resumo: The textile industries consuming a large quantity of water which generates a high volume of effluent. One of the main characteristics of the intense color of effluent is due to a significant percentage of non-fixed dye to the fabric during the process. Thus, it is essential to remove this color of effluent and one of the techniques that have received special attention due to its efficiency and versatility, is the adsorption on activated carbon. However, so that the process becomes economically viable, it is necessary that the adsorbent can be regenerated after becoming saturated, to be reused in the process. Within this context, the aim of this study was to evaluate the ability of dye desorption of activated carbon and analyze the behavior of the cycles of adsorption / desorption in batch. The study started with the characterization of four activated carbons, which is: babassu, coconut, palm and bone char. The characterizations were carried point of zero charge, adsorption/desorption of N2, FTIR and method Boehm. The adsorption capacity of these activated carbons was evaluated, and the bone char was the one with the most capacity of approximately 113 mg/g. Thus, this coal was used in the studies desorption. Kinetic and equilibrium studies were performed for the adsorption of the dye on bone char to identify the possible mechanism of adsorption, which may influence the ability of the dye desorption of the activated carbon. The pseudo-first order and Langmuir model were the best fit to experimental data, indicating that diffusion of dye molecules through the boundary layer is the rate limiting step for adsorption and chemisorption occur, which can hinder desorption. Thus, to verify the ability of the dye desorption, the parameters evaluated in the desorption of the dye were contact time, pH of the water and initial concentration of regenerants, and products used to perform the desorption water, NaOH, alcohol methyl, ethyl alcohol and isopropyl alcohol. The initial pH of the water was found to have little influence on the ability of desorption of the dye, and the higher desorption capacity was 2.09 mg/g at pH 12. Tests with NaOH showed that the smaller the concentration the greater the ability desorption, and in 0.01 mol/L NaOH desorbed amount was 3.86 mg/g. The organic solvents showed improved desorption efficiency when diluted with water. Thus, the optimum desorption capacities were obtained with 50% (v / v) isopropyl alcohol, 50% (v / v) ethyl alcohol and 80% (v / v) alcohol methyl, with 21.76, 20.41 and 15.56 mg/g, respectively. Kinetic study for desorption of the dye with isopropyl alcohol and ethyl alcohol were performed, and the model that best fit was the pseudo-second order, which presented the value of the rate constant larger than the adsorption step, due desorption is faster. Experiments to obtain the desorption isotherms were performed at temperatures of 20, 30 and 40 ºC. The desorption isotherms and adsorption of bone char were classified according to Giles et al. (1958) to demonstrate the appearance of a hysteresis due to different classifications of isotherms, and this fact is associated with the irreversibility of the process. Thermodynamic study was also performed, showing that with increasing desorption, there is an increased ?Ho and ?So, indicating that, due to the increased amount desorbed, there is an increased energy and disorder in the system. However, with increasing temperature, a reduction of ?Go, suggesting that with the increase in temperature there is a greater viability of the process. Finally, the adsorption and desorption cycles in batch showed that the dye can bind to the adsorbent by strong interactions and by weak interaction, wherein the strongly adsorbed amount cannot be desorbed while the dye interacted with the adsorbent by weak interactions was able to be desorbed. However, the most desorption percentage obtained was 28% and 30% ethyl alcohol and isopropyl alcohol, respectively, at the temperature of 40 °C and in consequence of the fact that almost all adsorbed amount from the second cycle be desorbed it's can reuse the charcoal in the process.
id UEM-10_9ff7d0a3170852c68ba741ec46e6725d
oai_identifier_str oai:localhost:1/3741
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Estudo da dessorção seletiva do corante reativo em carvão ativadoDessorçãoCorante reatívoCarvão ativadoDessorçãoCorante reatívo.EngenhariasEngenharia QuímicaThe textile industries consuming a large quantity of water which generates a high volume of effluent. One of the main characteristics of the intense color of effluent is due to a significant percentage of non-fixed dye to the fabric during the process. Thus, it is essential to remove this color of effluent and one of the techniques that have received special attention due to its efficiency and versatility, is the adsorption on activated carbon. However, so that the process becomes economically viable, it is necessary that the adsorbent can be regenerated after becoming saturated, to be reused in the process. Within this context, the aim of this study was to evaluate the ability of dye desorption of activated carbon and analyze the behavior of the cycles of adsorption / desorption in batch. The study started with the characterization of four activated carbons, which is: babassu, coconut, palm and bone char. The characterizations were carried point of zero charge, adsorption/desorption of N2, FTIR and method Boehm. The adsorption capacity of these activated carbons was evaluated, and the bone char was the one with the most capacity of approximately 113 mg/g. Thus, this coal was used in the studies desorption. Kinetic and equilibrium studies were performed for the adsorption of the dye on bone char to identify the possible mechanism of adsorption, which may influence the ability of the dye desorption of the activated carbon. The pseudo-first order and Langmuir model were the best fit to experimental data, indicating that diffusion of dye molecules through the boundary layer is the rate limiting step for adsorption and chemisorption occur, which can hinder desorption. Thus, to verify the ability of the dye desorption, the parameters evaluated in the desorption of the dye were contact time, pH of the water and initial concentration of regenerants, and products used to perform the desorption water, NaOH, alcohol methyl, ethyl alcohol and isopropyl alcohol. The initial pH of the water was found to have little influence on the ability of desorption of the dye, and the higher desorption capacity was 2.09 mg/g at pH 12. Tests with NaOH showed that the smaller the concentration the greater the ability desorption, and in 0.01 mol/L NaOH desorbed amount was 3.86 mg/g. The organic solvents showed improved desorption efficiency when diluted with water. Thus, the optimum desorption capacities were obtained with 50% (v / v) isopropyl alcohol, 50% (v / v) ethyl alcohol and 80% (v / v) alcohol methyl, with 21.76, 20.41 and 15.56 mg/g, respectively. Kinetic study for desorption of the dye with isopropyl alcohol and ethyl alcohol were performed, and the model that best fit was the pseudo-second order, which presented the value of the rate constant larger than the adsorption step, due desorption is faster. Experiments to obtain the desorption isotherms were performed at temperatures of 20, 30 and 40 ºC. The desorption isotherms and adsorption of bone char were classified according to Giles et al. (1958) to demonstrate the appearance of a hysteresis due to different classifications of isotherms, and this fact is associated with the irreversibility of the process. Thermodynamic study was also performed, showing that with increasing desorption, there is an increased ?Ho and ?So, indicating that, due to the increased amount desorbed, there is an increased energy and disorder in the system. However, with increasing temperature, a reduction of ?Go, suggesting that with the increase in temperature there is a greater viability of the process. Finally, the adsorption and desorption cycles in batch showed that the dye can bind to the adsorbent by strong interactions and by weak interaction, wherein the strongly adsorbed amount cannot be desorbed while the dye interacted with the adsorbent by weak interactions was able to be desorbed. However, the most desorption percentage obtained was 28% and 30% ethyl alcohol and isopropyl alcohol, respectively, at the temperature of 40 °C and in consequence of the fact that almost all adsorbed amount from the second cycle be desorbed it's can reuse the charcoal in the process.As indústrias têxteis consomem uma elevada quantidade de água o que gera um elevado volume de efluente. Uma das principais características desses efluentes é a cor intensa, devido a uma significativa porcentagem de corante não fixado ao tecido durante o processo. Assim, é imprescindível a remoção da cor deste efluente e uma das técnicas que tem se destacado, devido a sua eficiência e versatilidade, é a adsorção desses corantes em carvão ativado. Entretanto, para que o processo se torne economicamente viável, é necessário que este adsorvente possa ser regenerado após estar saturado, para ser reutilizado no processo. Dentro deste contexto, o objetivo deste trabalho foi avaliar a capacidade de dessorção de corante do carvão ativado e analisar o comportamento do mesmo em ciclos de adsorção/dessorção em batelada. O estudo foi iniciado com a caracterização de quatro carvões ativados, quais seja: babaçu, casca de coco, dendê e osso. As caracterizações realizadas foram ponto de carga zero, adsorção/dessorção de N2, FTIR e método de Boehm. A capacidade de adsorção desses carvões foi avaliada, sendo que o carvão ativado de osso foi o que apresentou a maior capacidade de remoção de aproximadamente 113 mg/g. Assim, este carvão foi utilizado nos estudos de dessorção. Estudos cinéticos e de equilíbrio foram realizados para a adsorção do corante em carvão ativado de osso a fim de identificar o possível mecanismo de adsorção, o qual pode influenciar na capacidade de dessorção do corante do carvão ativado. O modelo cinético de pseudo-primeira ordem e o modelo de Langmuir foram os que melhor se ajustaram aos dados experimentais, indicando que a difusão das moléculas do corante através da camada limite é a etapa limitante e que a adsorção por ocorrer por quimissorção, que pode dificultar a dessorção. Desta forma, a fim de verificar a capacidade de dessorção do corante, os parâmetros avaliados na dessorção do corante foram o tempo de contato, pH da água e concentração inicial dos regenerantes, sendo os produtos utilizados para realizar a dessorção a água, NaOH, álcool metílico, álcool etílico e álcool isopropílico. O pH inicial da água mostrou ter pouca influência na capacidade de dessorção do corante, sendo que a maior capacidade de dessorção foi de 2,09 mg/g em pH = 12. Ensaios com solução de NaOH mostraram que quanto menor a concentração maior a capacidade de dessorção, sendo que em 0,01 mol/L de NaOH a quantidade dessorvida foi de 3,86 mg/g. Os solventes orgânicos apresentaram eficiência de dessorção melhorada quando diluídos em água. Deste modo, as melhores capacidades de dessorção foram obtidas com álcool isopropílico 50% (v/v), álcool etílico 50% (v/v) e álcool metílico 80% (v/v), com 21,76, 20,41 e 15,56 mg/g, respectivamente. Estudo cinético para a dessorção do corante com o álcool isopropílico e o álcool etílico foram realizados, sendo que o modelo que melhor se ajustou foi o de pseudo-segunda ordem, que apresentou o valor da constante de velocidade maior que o da etapa de adsorção, devido a dessorção ser mais rápida. Experimentos para obtenção das isotermas de dessorção foram realizados nas temperaturas de 20, 30 e 40 ºC. As isotermas de dessorção e de adsorção do carvão de osso foram classificadas de acordo com Giles et al. (1958) para demonstrar o surgimento de uma histerese, devido às diferentes classificações das isotermas, sendo que este fato está associado à irreversibilidade do processo. Estudo termodinâmico também foi realizado, mostrando que, com o aumento da dessorção, há um aumento de ?Ho e ?So, indicando que, devido ao aumento quantidade dessorvida, há um aumento de energia e desordem no sistema. Contudo, com o aumento da temperatura, houve uma diminuição de ?Go, sugerindo que com o aumento da temperatura há uma maior viabilidade do processo. Por fim, os ciclos de adsorção e dessorção em batelada mostraram que o corante pode se ligar ao adsorvente tanto por interações fortes quanto por interações fracas, na qual a quantidade fortemente adsorvida não é capaz de ser dessorvida enquanto que o corante que interagiu ao adsorvente por interações fracas foi capaz de ser dessorvido. Contudo, a maior porcentagem de dessorção obtida foi de 28% e 30% para o álcool etílico e o álcool isopropílico, respectivamente, na temperatura de 40 ºC e, em consequência do fato de que praticamente toda quantidade adsorvida a partir do segundo ciclo poder ser dessorvida, é possível reutilizar o carvão ativado no processo.xix, 100 fUniversidade Estadual de MaringáBrasilDepartamento de Engenharia QuímicaPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRCentro de TecnologiaPedro Augusto ArroyoIndianara Conceição Ostroski - Universidade Federal de GoiásMaria Angélica Simões Dornellas de Barros - UEMCarvalho, Dayane Samara de2018-04-17T17:42:55Z2018-04-17T17:42:55Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://repositorio.uem.br:8080/jspui/handle/1/3741porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2023-12-12T19:49:06Zoai:localhost:1/3741Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:56:53.672731Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Estudo da dessorção seletiva do corante reativo em carvão ativado
title Estudo da dessorção seletiva do corante reativo em carvão ativado
spellingShingle Estudo da dessorção seletiva do corante reativo em carvão ativado
Carvalho, Dayane Samara de
Dessorção
Corante reatívo
Carvão ativado
Dessorção
Corante reatívo.
Engenharias
Engenharia Química
title_short Estudo da dessorção seletiva do corante reativo em carvão ativado
title_full Estudo da dessorção seletiva do corante reativo em carvão ativado
title_fullStr Estudo da dessorção seletiva do corante reativo em carvão ativado
title_full_unstemmed Estudo da dessorção seletiva do corante reativo em carvão ativado
title_sort Estudo da dessorção seletiva do corante reativo em carvão ativado
author Carvalho, Dayane Samara de
author_facet Carvalho, Dayane Samara de
author_role author
dc.contributor.none.fl_str_mv Pedro Augusto Arroyo
Indianara Conceição Ostroski - Universidade Federal de Goiás
Maria Angélica Simões Dornellas de Barros - UEM
dc.contributor.author.fl_str_mv Carvalho, Dayane Samara de
dc.subject.por.fl_str_mv Dessorção
Corante reatívo
Carvão ativado
Dessorção
Corante reatívo.
Engenharias
Engenharia Química
topic Dessorção
Corante reatívo
Carvão ativado
Dessorção
Corante reatívo.
Engenharias
Engenharia Química
description The textile industries consuming a large quantity of water which generates a high volume of effluent. One of the main characteristics of the intense color of effluent is due to a significant percentage of non-fixed dye to the fabric during the process. Thus, it is essential to remove this color of effluent and one of the techniques that have received special attention due to its efficiency and versatility, is the adsorption on activated carbon. However, so that the process becomes economically viable, it is necessary that the adsorbent can be regenerated after becoming saturated, to be reused in the process. Within this context, the aim of this study was to evaluate the ability of dye desorption of activated carbon and analyze the behavior of the cycles of adsorption / desorption in batch. The study started with the characterization of four activated carbons, which is: babassu, coconut, palm and bone char. The characterizations were carried point of zero charge, adsorption/desorption of N2, FTIR and method Boehm. The adsorption capacity of these activated carbons was evaluated, and the bone char was the one with the most capacity of approximately 113 mg/g. Thus, this coal was used in the studies desorption. Kinetic and equilibrium studies were performed for the adsorption of the dye on bone char to identify the possible mechanism of adsorption, which may influence the ability of the dye desorption of the activated carbon. The pseudo-first order and Langmuir model were the best fit to experimental data, indicating that diffusion of dye molecules through the boundary layer is the rate limiting step for adsorption and chemisorption occur, which can hinder desorption. Thus, to verify the ability of the dye desorption, the parameters evaluated in the desorption of the dye were contact time, pH of the water and initial concentration of regenerants, and products used to perform the desorption water, NaOH, alcohol methyl, ethyl alcohol and isopropyl alcohol. The initial pH of the water was found to have little influence on the ability of desorption of the dye, and the higher desorption capacity was 2.09 mg/g at pH 12. Tests with NaOH showed that the smaller the concentration the greater the ability desorption, and in 0.01 mol/L NaOH desorbed amount was 3.86 mg/g. The organic solvents showed improved desorption efficiency when diluted with water. Thus, the optimum desorption capacities were obtained with 50% (v / v) isopropyl alcohol, 50% (v / v) ethyl alcohol and 80% (v / v) alcohol methyl, with 21.76, 20.41 and 15.56 mg/g, respectively. Kinetic study for desorption of the dye with isopropyl alcohol and ethyl alcohol were performed, and the model that best fit was the pseudo-second order, which presented the value of the rate constant larger than the adsorption step, due desorption is faster. Experiments to obtain the desorption isotherms were performed at temperatures of 20, 30 and 40 ºC. The desorption isotherms and adsorption of bone char were classified according to Giles et al. (1958) to demonstrate the appearance of a hysteresis due to different classifications of isotherms, and this fact is associated with the irreversibility of the process. Thermodynamic study was also performed, showing that with increasing desorption, there is an increased ?Ho and ?So, indicating that, due to the increased amount desorbed, there is an increased energy and disorder in the system. However, with increasing temperature, a reduction of ?Go, suggesting that with the increase in temperature there is a greater viability of the process. Finally, the adsorption and desorption cycles in batch showed that the dye can bind to the adsorbent by strong interactions and by weak interaction, wherein the strongly adsorbed amount cannot be desorbed while the dye interacted with the adsorbent by weak interactions was able to be desorbed. However, the most desorption percentage obtained was 28% and 30% ethyl alcohol and isopropyl alcohol, respectively, at the temperature of 40 °C and in consequence of the fact that almost all adsorbed amount from the second cycle be desorbed it's can reuse the charcoal in the process.
publishDate 2013
dc.date.none.fl_str_mv 2013
2018-04-17T17:42:55Z
2018-04-17T17:42:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/3741
url http://repositorio.uem.br:8080/jspui/handle/1/3741
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1813258633951051776