Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
Texto Completo: | http://repositorio.uem.br:8080/jspui/handle/1/3829 |
Resumo: | This work aims to evaluate the activity and performance of catalysts CuO-ZnO-Al2O3 prepared by the sol-gel method applied in methanol steam reforming reaction for hydrogen production. To this end, five catalysts with different concentrations of Cu and Zn were synthesized, taking into account the composition of the commercial catalyst HiFUEL R120 supplied by Alfa Aesar®. They were denominated as follows: A1 (9% Cu), A2 (17% Cu), A3 (23% Cu), A4 (41% Cu) and A5 (48% Cu). The catalysts were previously characterized by Thermogravimetric Analysis (TG), specific surface area (BET) and total pore volume, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption of Ammonia (TPD-NH3) and Scanning Electron Microscopy (SEM). The results of the characterizations (structural and textural) showed significant differences between the catalysts synthesized by the sol-gel method and the commercial. In addition, the properties of the sol-gel catalysts changed with the variation of their composition, especially with respect to the metal dispersion, which decreased with increasing the amount of Cu and Zn. With respect to the catalytic evaluation, all catalysts were tested for the methanol steam reforming reaction at 300 ºC. Under the experimental conditions used, there was no formation of CO, indicating that this reaction is interesting for the hydrogen production. In the catalytic tests, the HiFUEL R120 showed the highest conversion, followed by the catalyst A4 sol-gel. All catalysts showed deactivation during the reaction, due to sintering and coalescence of the Cu crystallites. The A2 and A3 catalysts presented the same catalytic behavior. Comparing the sol-gel catalysts, it was found that the catalytic activity increased with the active phase (Cu) content, even with the reduction of surface area and metal dispersion. However, this behavior occurred only up to catalyst A4. For the catalyst A5, which had the highest amount of copper, the conversion was the lowest found, that is, the effect of drastic reduction of the metal dispersion was greater than the effect of the Cu percentage, and the dispersion became the activity controller. The commercial catalyst showed the highest conversion due to its combination of high active phase content and high specific area. One explanation for the fact that no sol-gel catalyst was more active than the commercial is that the sol-gel method produces extremely homogeneous materials, namely, the active phase is not distributed only on the surface available for reaction, but also in support matrix (alumina), where is inaccessible to the reactants. In contrast, the sol-gel synthesis tends to produce highly porous materials with specific areas larger than those produced by more traditional methods. The catalysts A1 and A2 showed the highest Turnover Frequency (TOF). In a matter of catalytic activity by active site, the TOF decreased with increasing the amount of Cu. This is because, for smaller quantities of copper, it is more dispersed on the catalyst surface, and the active sites become more available for reaction. Thus, the catalyst A1 showed the highest conversion by active phase amount, due to its better dispersion and higher specific area. In conclusion, it was found that the catalyst A1 had the highest metal dispersion and the better reaction frequency (TOF), and that the HiFUEL R120 produced the highest conversion, followed by the A4 sol-gel, which proved to be the most active sol-gel catalyst. |
id |
UEM-10_ab65c22222fecd54c049990942a049ef |
---|---|
oai_identifier_str |
oai:localhost:1/3829 |
network_acronym_str |
UEM-10 |
network_name_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository_id_str |
|
spelling |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanolSynthesis and evaluation of sol-gel catalysts for the methanol steam reformingHidrogênioCélulas a combustívelMetanolReforma a vaporCatalisadoresMétodo sol-gelBrasil.HydrogenFuel cellsMethanol steam reformingCuO-ZnO-Al2O3 catalystsSol-gel methodBrazil.EngenhariasEngenharia QuímicaThis work aims to evaluate the activity and performance of catalysts CuO-ZnO-Al2O3 prepared by the sol-gel method applied in methanol steam reforming reaction for hydrogen production. To this end, five catalysts with different concentrations of Cu and Zn were synthesized, taking into account the composition of the commercial catalyst HiFUEL R120 supplied by Alfa Aesar®. They were denominated as follows: A1 (9% Cu), A2 (17% Cu), A3 (23% Cu), A4 (41% Cu) and A5 (48% Cu). The catalysts were previously characterized by Thermogravimetric Analysis (TG), specific surface area (BET) and total pore volume, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption of Ammonia (TPD-NH3) and Scanning Electron Microscopy (SEM). The results of the characterizations (structural and textural) showed significant differences between the catalysts synthesized by the sol-gel method and the commercial. In addition, the properties of the sol-gel catalysts changed with the variation of their composition, especially with respect to the metal dispersion, which decreased with increasing the amount of Cu and Zn. With respect to the catalytic evaluation, all catalysts were tested for the methanol steam reforming reaction at 300 ºC. Under the experimental conditions used, there was no formation of CO, indicating that this reaction is interesting for the hydrogen production. In the catalytic tests, the HiFUEL R120 showed the highest conversion, followed by the catalyst A4 sol-gel. All catalysts showed deactivation during the reaction, due to sintering and coalescence of the Cu crystallites. The A2 and A3 catalysts presented the same catalytic behavior. Comparing the sol-gel catalysts, it was found that the catalytic activity increased with the active phase (Cu) content, even with the reduction of surface area and metal dispersion. However, this behavior occurred only up to catalyst A4. For the catalyst A5, which had the highest amount of copper, the conversion was the lowest found, that is, the effect of drastic reduction of the metal dispersion was greater than the effect of the Cu percentage, and the dispersion became the activity controller. The commercial catalyst showed the highest conversion due to its combination of high active phase content and high specific area. One explanation for the fact that no sol-gel catalyst was more active than the commercial is that the sol-gel method produces extremely homogeneous materials, namely, the active phase is not distributed only on the surface available for reaction, but also in support matrix (alumina), where is inaccessible to the reactants. In contrast, the sol-gel synthesis tends to produce highly porous materials with specific areas larger than those produced by more traditional methods. The catalysts A1 and A2 showed the highest Turnover Frequency (TOF). In a matter of catalytic activity by active site, the TOF decreased with increasing the amount of Cu. This is because, for smaller quantities of copper, it is more dispersed on the catalyst surface, and the active sites become more available for reaction. Thus, the catalyst A1 showed the highest conversion by active phase amount, due to its better dispersion and higher specific area. In conclusion, it was found that the catalyst A1 had the highest metal dispersion and the better reaction frequency (TOF), and that the HiFUEL R120 produced the highest conversion, followed by the A4 sol-gel, which proved to be the most active sol-gel catalyst.Esta dissertação tem por objetivo avaliar a atividade e desempenho de catalisadores CuO-ZnO-Al2O3 preparados pelo método sol-gel aplicados na reação de reforma a vapor de metanol para a produção de hidrogênio. Para tal, foram sintetizados cinco catalisadores com diferentes teores de Cu e Zn, levando-se em conta a composição do catalisador comercial HiFUEL R120 fornecido pela Alfa Aesar®. Estes foram denominados da seguinte forma: A1 (9% Cu), A2 (17% Cu), A3 (23% Cu), A4 (41% Cu) e A5 (48% Cu). Os catalisadores foram previamente caracterizados por Termogravimetria (TG), área específica (BET) e volume total de poros, Difração de Raios X (DRX), Redução à Temperatura Programada (RTP), Dessorção à Temperatura Programada de Amônia (DTP-NH3) e Microscopia Eletrônica de Varredura (MEV). Os resultados das caracterizações (texturais e estruturais) mostraram grandes diferenças entre os catalisadores sintetizados pelo método sol-gel e o comercial. Além disso, foram verificadas mudanças nas propriedades dos catalisadores sol-gel com a variação da sua composição, principalmente com relação à dispersão metálica, que diminuiu com o aumento da quantidade de Cu e Zn. Com relação à avaliação catalítica, todos os catalisadores sintetizados foram testados para a reação de reforma a vapor de metanol a 300 ºC. Nas condições experimentais utilizadas, não se observou a formação de CO, indicando que esta reação é muito interessante para a produção de hidrogênio. Nos testes catalíticos, o catalisador que apresentou a maior conversão foi o HiFUEL R120, seguido do A4 sol-gel. Todos os catalisadores sofreram desativação no decorrer da reação, possivelmente devido à sinterização e coalescência dos cristais de Cu. Os catalisadores A2 e A3 apresentaram praticamente o mesmo comportamento catalítico. Comparando-se os catalisadores sol-gel, verificou-se que a atividade catalítica aumentou com a porcentagem da fase ativa (Cu), mesmo com a diminuição da área específica e da dispersão metálica. Entretanto, esse comportamento ocorreu somente até o catalisador A4. Para o catalisador A5, mesmo a quantidade de cobre sendo maior, a conversão foi a menor encontrada, ou seja, o efeito da drástica diminuição da dispersão metálica foi maior que o efeito da porcentagem de Cu, e a dispersão passou a controlar a atividade. O catalisador comercial (HiFUEL R120) apresentou a maior atividade devido à sua combinação de alta porcentagem de fase ativa e alta área específica. Uma justificativa para o fato de nenhum catalisador sol-gel ter sido mais ativo que o comercial é que o método gol-gel produz materiais extremamente homogêneos, ou seja, a fase ativa não fica distribuída somente na superfície disponível para a reação, mas também dentro da matriz do suporte (alumina), onde é inacessível para os reagentes. Em contrapartida, a síntese sol-gel tende a produzir materiais altamente porosos e com áreas específicas maiores do que os produzidos por outros métodos mais clássicos. Os catalisadores que apresentaram a maior frequência de Turnover (TOF) foram o A1 e o A2. Em questão de atividade catalítica por sítio ativo de catalisador, o TOF decresceu com o aumento da quantidade de Cu. Isto ocorre pois, para menores quantidades de cobre, este se encontra mais disperso na superfície do catalisador, ficando os sítios ativos mais disponíveis para a reação. Assim, o catalisador A1 apresentou a maior conversão por quantidade de fase ativa, devido à sua melhor dispersão e maior área específica. Em conclusão, verificou-se que o catalisador A1 apresentou a maior dispersão metálica e a melhor frequência de reação (TOF) e que o HiFUEL R120 produziu a maior conversão, seguido do A4 sol-gel, que se mostrou o catalisador sol-gel mais ativo, e também o mais semelhante ao comercial.1 CD-ROM (xv, 114 f.)Universidade Estadual de MaringáBrasilDepartamento de Engenharia QuímicaPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRCentro de TecnologiaLuiz Mario de Matos JorgeMárcio Eduardo Berezuk - UTFPRChristian Gonçalves Alonso - UFGOnélia Aparecida Andreo dos Santos - UEMValmir Calsavara - UEMFornari, Arielle Cristina2018-04-17T17:45:40Z2018-04-17T17:45:40Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://repositorio.uem.br:8080/jspui/handle/1/3829porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-10-15T18:31:49Zoai:localhost:1/3829Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:56:59.124994Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol Synthesis and evaluation of sol-gel catalysts for the methanol steam reforming |
title |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol |
spellingShingle |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol Fornari, Arielle Cristina Hidrogênio Células a combustível Metanol Reforma a vapor Catalisadores Método sol-gel Brasil. Hydrogen Fuel cells Methanol steam reforming CuO-ZnO-Al2O3 catalysts Sol-gel method Brazil. Engenharias Engenharia Química |
title_short |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol |
title_full |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol |
title_fullStr |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol |
title_full_unstemmed |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol |
title_sort |
Síntese e avaliação de catalisadores sol-gel destinados à reforma a vapor de metanol |
author |
Fornari, Arielle Cristina |
author_facet |
Fornari, Arielle Cristina |
author_role |
author |
dc.contributor.none.fl_str_mv |
Luiz Mario de Matos Jorge Márcio Eduardo Berezuk - UTFPR Christian Gonçalves Alonso - UFG Onélia Aparecida Andreo dos Santos - UEM Valmir Calsavara - UEM |
dc.contributor.author.fl_str_mv |
Fornari, Arielle Cristina |
dc.subject.por.fl_str_mv |
Hidrogênio Células a combustível Metanol Reforma a vapor Catalisadores Método sol-gel Brasil. Hydrogen Fuel cells Methanol steam reforming CuO-ZnO-Al2O3 catalysts Sol-gel method Brazil. Engenharias Engenharia Química |
topic |
Hidrogênio Células a combustível Metanol Reforma a vapor Catalisadores Método sol-gel Brasil. Hydrogen Fuel cells Methanol steam reforming CuO-ZnO-Al2O3 catalysts Sol-gel method Brazil. Engenharias Engenharia Química |
description |
This work aims to evaluate the activity and performance of catalysts CuO-ZnO-Al2O3 prepared by the sol-gel method applied in methanol steam reforming reaction for hydrogen production. To this end, five catalysts with different concentrations of Cu and Zn were synthesized, taking into account the composition of the commercial catalyst HiFUEL R120 supplied by Alfa Aesar®. They were denominated as follows: A1 (9% Cu), A2 (17% Cu), A3 (23% Cu), A4 (41% Cu) and A5 (48% Cu). The catalysts were previously characterized by Thermogravimetric Analysis (TG), specific surface area (BET) and total pore volume, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption of Ammonia (TPD-NH3) and Scanning Electron Microscopy (SEM). The results of the characterizations (structural and textural) showed significant differences between the catalysts synthesized by the sol-gel method and the commercial. In addition, the properties of the sol-gel catalysts changed with the variation of their composition, especially with respect to the metal dispersion, which decreased with increasing the amount of Cu and Zn. With respect to the catalytic evaluation, all catalysts were tested for the methanol steam reforming reaction at 300 ºC. Under the experimental conditions used, there was no formation of CO, indicating that this reaction is interesting for the hydrogen production. In the catalytic tests, the HiFUEL R120 showed the highest conversion, followed by the catalyst A4 sol-gel. All catalysts showed deactivation during the reaction, due to sintering and coalescence of the Cu crystallites. The A2 and A3 catalysts presented the same catalytic behavior. Comparing the sol-gel catalysts, it was found that the catalytic activity increased with the active phase (Cu) content, even with the reduction of surface area and metal dispersion. However, this behavior occurred only up to catalyst A4. For the catalyst A5, which had the highest amount of copper, the conversion was the lowest found, that is, the effect of drastic reduction of the metal dispersion was greater than the effect of the Cu percentage, and the dispersion became the activity controller. The commercial catalyst showed the highest conversion due to its combination of high active phase content and high specific area. One explanation for the fact that no sol-gel catalyst was more active than the commercial is that the sol-gel method produces extremely homogeneous materials, namely, the active phase is not distributed only on the surface available for reaction, but also in support matrix (alumina), where is inaccessible to the reactants. In contrast, the sol-gel synthesis tends to produce highly porous materials with specific areas larger than those produced by more traditional methods. The catalysts A1 and A2 showed the highest Turnover Frequency (TOF). In a matter of catalytic activity by active site, the TOF decreased with increasing the amount of Cu. This is because, for smaller quantities of copper, it is more dispersed on the catalyst surface, and the active sites become more available for reaction. Thus, the catalyst A1 showed the highest conversion by active phase amount, due to its better dispersion and higher specific area. In conclusion, it was found that the catalyst A1 had the highest metal dispersion and the better reaction frequency (TOF), and that the HiFUEL R120 produced the highest conversion, followed by the A4 sol-gel, which proved to be the most active sol-gel catalyst. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2018-04-17T17:45:40Z 2018-04-17T17:45:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.uem.br:8080/jspui/handle/1/3829 |
url |
http://repositorio.uem.br:8080/jspui/handle/1/3829 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Departamento de Engenharia Química Programa de Pós-Graduação em Engenharia Química UEM Maringá, PR Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil Departamento de Engenharia Química Programa de Pós-Graduação em Engenharia Química UEM Maringá, PR Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
collection |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
|
_version_ |
1813258666961272832 |