Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo

Detalhes bibliográficos
Autor(a) principal: Montanher, Otávio Cristiano
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
Texto Completo: http://repositorio.uem.br:8080/jspui/handle/1/2905
Resumo: This study involves a research about the suspended sediment transport (SST) of large Amazonian white water rivers: Içá, Japurá, Juruá, Purus, Madeira, Solimões and Amazonas. Despite the environmental importance of the suspended sediment concentration (SSC) for those rivers, there are spatial and temporal restrictions in the in situ collected data series. As the amount of suspended sediment in the rivers might indicate the frequency and intensity of climatic processes and soil coverage changes, important research issues in the Amazon, an adequate database may support some hypothesis about the environmental dynamic of this region. Therefore, this research adopted empirical models, which use orbital images as input data, for estimating the SSC in the main Amazonian rivers that promote the sediment transport. Such models have not yet been applied, so this database is inedited, which is accessible in this document. This database supported some hypothesis tests, and some results are contradictory when compared to the consulted bibliography. In relation to the main results obtained here: (i) 5643 images were processed: 5511 from TM sensor and 132 from ETM+ sensor. Of that total, 5409 were applied for retrieving temporal series, while 234 were used in an experiment to investigate the applicability of the TM models in ETM+ data; (ii) the SSC estimates were grouped with in situ collected data, provided by the Brazilian National Water Agency and by the ORE HYBAM (from the last were also obtained estimates from MODIS images). With discharge data, the SSC series generated daily SST series, which have an average extension of 30,05 years. The mean periodicity of SSC data for all stations is one value every 11,46 days; (iii) it is possible to estimate the SST by using discharge data for three stations: Óbidos, Manacapuru and Fazenda Vista Alegre (rivers: Amazonas, Solimões and Madeira). For other stations, the described method should be applied only for certain periods of the year; (iv) the transport and sediment yield were mapped, as well as its temporal variabilities, for both monthly and annual scales. Also, were discussed some spatial relations between the sediment yield and latitude, longitude and distance from the source region; (v) trend analysis were performed for all the stations, taking into account series of approximately 30 years, and were not founded significant trends of SST increase or decrease along time. Another trend analysis was applied using extended temporal series (between 43 and 67 years) for the rivers: Amazonas, Madeira and Solimões, and once again significant trends were not founded; (vi) were performed analysis of the relationship between the SST and climate variables, as precipitation and sea surface temperature anomalies (SSTA) of both Atlantic and Pacific oceans. In annual scale, taking into account the series seasonality, correlations between the precipitation and the SST were observed for almost all the stations. However, when the trend-cycle series were used, significant correlations were not observed. In relation to the climate indexes, those with the highest correlations with the SST were associated to the North Tropical Atlantic. Some tests were performed using indexes linked to the El Niño episodes, which seems to have little influence over the SST estimated in the handled stations; (vii) the relation between the estimated SST and the deforestation at the hydrographic basin level was evaluated. Taking into consideration the PRODES and Terra-i databases, it was not possible to conclude that the deforestation is triggering an increase in the SST of the Amazon river. Finally, it is expected that these results collaborate for a better description and understating of some great Amazonian rivers
id UEM-10_ed8fd1713b6f32050024225c43c09e5d
oai_identifier_str oai:localhost:1/2905
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do soloTransporte de sedimentos, Rios Amazônicos, Bacias Hidrográficas, Amazônia, Sensoriamento remoto, Imagens Landsat, Séries Temporais, Sedimentos suspensos - BrasilAmazon drainage basinSediment yieldTime seriesLandsat 5 images. Regression analysisEl niño - BrazilCiências HumanasGeografiaThis study involves a research about the suspended sediment transport (SST) of large Amazonian white water rivers: Içá, Japurá, Juruá, Purus, Madeira, Solimões and Amazonas. Despite the environmental importance of the suspended sediment concentration (SSC) for those rivers, there are spatial and temporal restrictions in the in situ collected data series. As the amount of suspended sediment in the rivers might indicate the frequency and intensity of climatic processes and soil coverage changes, important research issues in the Amazon, an adequate database may support some hypothesis about the environmental dynamic of this region. Therefore, this research adopted empirical models, which use orbital images as input data, for estimating the SSC in the main Amazonian rivers that promote the sediment transport. Such models have not yet been applied, so this database is inedited, which is accessible in this document. This database supported some hypothesis tests, and some results are contradictory when compared to the consulted bibliography. In relation to the main results obtained here: (i) 5643 images were processed: 5511 from TM sensor and 132 from ETM+ sensor. Of that total, 5409 were applied for retrieving temporal series, while 234 were used in an experiment to investigate the applicability of the TM models in ETM+ data; (ii) the SSC estimates were grouped with in situ collected data, provided by the Brazilian National Water Agency and by the ORE HYBAM (from the last were also obtained estimates from MODIS images). With discharge data, the SSC series generated daily SST series, which have an average extension of 30,05 years. The mean periodicity of SSC data for all stations is one value every 11,46 days; (iii) it is possible to estimate the SST by using discharge data for three stations: Óbidos, Manacapuru and Fazenda Vista Alegre (rivers: Amazonas, Solimões and Madeira). For other stations, the described method should be applied only for certain periods of the year; (iv) the transport and sediment yield were mapped, as well as its temporal variabilities, for both monthly and annual scales. Also, were discussed some spatial relations between the sediment yield and latitude, longitude and distance from the source region; (v) trend analysis were performed for all the stations, taking into account series of approximately 30 years, and were not founded significant trends of SST increase or decrease along time. Another trend analysis was applied using extended temporal series (between 43 and 67 years) for the rivers: Amazonas, Madeira and Solimões, and once again significant trends were not founded; (vi) were performed analysis of the relationship between the SST and climate variables, as precipitation and sea surface temperature anomalies (SSTA) of both Atlantic and Pacific oceans. In annual scale, taking into account the series seasonality, correlations between the precipitation and the SST were observed for almost all the stations. However, when the trend-cycle series were used, significant correlations were not observed. In relation to the climate indexes, those with the highest correlations with the SST were associated to the North Tropical Atlantic. Some tests were performed using indexes linked to the El Niño episodes, which seems to have little influence over the SST estimated in the handled stations; (vii) the relation between the estimated SST and the deforestation at the hydrographic basin level was evaluated. Taking into consideration the PRODES and Terra-i databases, it was not possible to conclude that the deforestation is triggering an increase in the SST of the Amazon river. Finally, it is expected that these results collaborate for a better description and understating of some great Amazonian riversEste texto relata uma pesquisa acerca do transporte de sedimentos suspensos (TSS) de grandes rios amazônicos de águas brancas: Içá, Japurá, Juruá, Purus, Madeira, Solimões e Amazonas. Apesar de a concentração de sedimentos suspensos (CSS) ser uma importante variável ambiental desses rios, há limitações espaciais e temporais das séries de dados adquiridos em campo. Visto que a quantidade de sedimentos suspensos nos rios pode indicar a frequência e a intensidade de processos climáticos e de mudanças na cobertura do solo, importantes temas de pesquisas na Amazônia, uma adequada base de dados tem a capacidade de suportar hipóteses sobre o funcionamento dos sistemas ambientais da região. Portanto, esta pesquisa adotou modelos empíricos baseados em imagens orbitais, como dados de entrada, para a estimativa da CSS nos principais rios amazônicos responsáveis pelo transporte de sedimentos. Tais modelos ainda não haviam sido aplicados, o que torna essa base de dados inédita, base esta disponibilizada neste documento. Essa base de dados permitiu o teste de diversas hipóteses, alguns resultados são contrários ao que foi observado na bibliografia. Com relação aos principais resultados obtidos: (i) foram processadas, no total, 5643 imagens, das quais: 5511 do sensor TM e 132 do sensor ETM+. Dessas, 5409 foram aplicadas para reconstituição das séries temporais, enquanto 234 foram utilizadas em um experimento para averiguação da aplicabilidade dos modelos TM em dados ETM+; (ii) as estimativas de CSS foram agrupadas com dados coletados in situ da Agência Nacional de Águas e do programa ORE HYBAM (desse programa também foram obtidas estimativas orbitais via imagens MODIS). Em conjunto com dados de vazão, as séries de CSS geraram séries diárias de TSS, que possuem aproximadamente 30 anos de extensão, em média. A periodicidade média de dados de CSS para todas as estações é de um valor a cada 11,46 dias; (iii) é possível estimar o TSS a partir da vazão para três estações: Óbidos, Manacapuru e Fazenda Vista Alegre (rios: Amazonas, Solimões e Madeira). Para as outras estações, o método descrito deve ser aplicado apenas em determinadas épocas do ano; (iv) o transporte e a produção de sedimentos foram mapeados, bem como sua variabilidade temporal, em escalas anual e mensal. Também foram discutidas algumas relações espaciais da produção de sedimentos com a latitude, a longitude e a distância da área fonte; (v) análises de tendência foram feitas para todas as estações, considerando-se séries de aproximadamente 30 anos, e não foram encontradas tendências significativas de aumento ou diminuição do TSS ao longo do tempo. Outra série de análises de tendência foi aplicada sobre séries temporais estendidas (entre 43 e 67 anos) para os rios Amazonas, Madeira e Solimões, e, novamente, não foram encontradas tendências significativas; (vi) foram feitas análises da relação entre o TSS e variáveis climáticas, como precipitação e anomalias de temperatura de superfície do mar (TSM) dos oceanos Atlântico e Pacífico. Em escala anual, considerando-se a sazonalidade das séries, foram observadas correlações entre a precipitação e o TSS para quase todas as estações. No entanto, quando são utilizadas séries de ciclo-tendência, não são observadas correlações significativas. Com relação aos índices climáticos, os que apresentaram a maior correlação simples com o TSS estavam ligados com a região do Atlântico Tropical Norte. Vários testes foram feitos com índices ligados aos eventos de El Niño, o qual parece influenciar pouco o TSS estimado nas estações trabalhadas; (vii) foi avaliada a relação entre o TSS estimado e o desflorestamento ao nível de bacia hidrográfica. Considerando-se as bases de dados do PRODES e do Terra-i, não é possível concluir que o desflorestamento esteja causando um aumento do TSS do rio Amazonas. Por fim, espera-se que esses resultados colaborem para uma melhor descrição e compreensão de grandes rios amazônicos.xiii, 307 fUniversidade Estadual de MaringáBrasilDepartamento de Geografia'Programa de Pós-Graduação em GeografiaUEMMaringá, PRCentro de Ciências Humanas, Letras e ArtesEdvard Elias de Souza FilhoPaulo Fernando Soares - UEMEvlyn Márcia Leão de Moraes Novo - INPEArchimedes Perez Filho - UNICAMPEricson Hideki Hayakawa - UNIOESTEMontanher, Otávio Cristiano2018-04-12T19:01:41Z2018-04-12T19:01:41Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/2905porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-10-16T19:31:50Zoai:localhost:1/2905Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:55:59.450724Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
title Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
spellingShingle Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
Montanher, Otávio Cristiano
Transporte de sedimentos, Rios Amazônicos, Bacias Hidrográficas, Amazônia, Sensoriamento remoto, Imagens Landsat, Séries Temporais, Sedimentos suspensos - Brasil
Amazon drainage basin
Sediment yield
Time series
Landsat 5 images. Regression analysis
El niño - Brazil
Ciências Humanas
Geografia
title_short Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
title_full Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
title_fullStr Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
title_full_unstemmed Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
title_sort Padrões espaço-temporais do transporte de sedimentos suspensos dos rios amazônicos de águas brancas : relações com o clima e mudanças na cobertura do solo
author Montanher, Otávio Cristiano
author_facet Montanher, Otávio Cristiano
author_role author
dc.contributor.none.fl_str_mv Edvard Elias de Souza Filho
Paulo Fernando Soares - UEM
Evlyn Márcia Leão de Moraes Novo - INPE
Archimedes Perez Filho - UNICAMP
Ericson Hideki Hayakawa - UNIOESTE
dc.contributor.author.fl_str_mv Montanher, Otávio Cristiano
dc.subject.por.fl_str_mv Transporte de sedimentos, Rios Amazônicos, Bacias Hidrográficas, Amazônia, Sensoriamento remoto, Imagens Landsat, Séries Temporais, Sedimentos suspensos - Brasil
Amazon drainage basin
Sediment yield
Time series
Landsat 5 images. Regression analysis
El niño - Brazil
Ciências Humanas
Geografia
topic Transporte de sedimentos, Rios Amazônicos, Bacias Hidrográficas, Amazônia, Sensoriamento remoto, Imagens Landsat, Séries Temporais, Sedimentos suspensos - Brasil
Amazon drainage basin
Sediment yield
Time series
Landsat 5 images. Regression analysis
El niño - Brazil
Ciências Humanas
Geografia
description This study involves a research about the suspended sediment transport (SST) of large Amazonian white water rivers: Içá, Japurá, Juruá, Purus, Madeira, Solimões and Amazonas. Despite the environmental importance of the suspended sediment concentration (SSC) for those rivers, there are spatial and temporal restrictions in the in situ collected data series. As the amount of suspended sediment in the rivers might indicate the frequency and intensity of climatic processes and soil coverage changes, important research issues in the Amazon, an adequate database may support some hypothesis about the environmental dynamic of this region. Therefore, this research adopted empirical models, which use orbital images as input data, for estimating the SSC in the main Amazonian rivers that promote the sediment transport. Such models have not yet been applied, so this database is inedited, which is accessible in this document. This database supported some hypothesis tests, and some results are contradictory when compared to the consulted bibliography. In relation to the main results obtained here: (i) 5643 images were processed: 5511 from TM sensor and 132 from ETM+ sensor. Of that total, 5409 were applied for retrieving temporal series, while 234 were used in an experiment to investigate the applicability of the TM models in ETM+ data; (ii) the SSC estimates were grouped with in situ collected data, provided by the Brazilian National Water Agency and by the ORE HYBAM (from the last were also obtained estimates from MODIS images). With discharge data, the SSC series generated daily SST series, which have an average extension of 30,05 years. The mean periodicity of SSC data for all stations is one value every 11,46 days; (iii) it is possible to estimate the SST by using discharge data for three stations: Óbidos, Manacapuru and Fazenda Vista Alegre (rivers: Amazonas, Solimões and Madeira). For other stations, the described method should be applied only for certain periods of the year; (iv) the transport and sediment yield were mapped, as well as its temporal variabilities, for both monthly and annual scales. Also, were discussed some spatial relations between the sediment yield and latitude, longitude and distance from the source region; (v) trend analysis were performed for all the stations, taking into account series of approximately 30 years, and were not founded significant trends of SST increase or decrease along time. Another trend analysis was applied using extended temporal series (between 43 and 67 years) for the rivers: Amazonas, Madeira and Solimões, and once again significant trends were not founded; (vi) were performed analysis of the relationship between the SST and climate variables, as precipitation and sea surface temperature anomalies (SSTA) of both Atlantic and Pacific oceans. In annual scale, taking into account the series seasonality, correlations between the precipitation and the SST were observed for almost all the stations. However, when the trend-cycle series were used, significant correlations were not observed. In relation to the climate indexes, those with the highest correlations with the SST were associated to the North Tropical Atlantic. Some tests were performed using indexes linked to the El Niño episodes, which seems to have little influence over the SST estimated in the handled stations; (vii) the relation between the estimated SST and the deforestation at the hydrographic basin level was evaluated. Taking into consideration the PRODES and Terra-i databases, it was not possible to conclude that the deforestation is triggering an increase in the SST of the Amazon river. Finally, it is expected that these results collaborate for a better description and understating of some great Amazonian rivers
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-04-12T19:01:41Z
2018-04-12T19:01:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/2905
url http://repositorio.uem.br:8080/jspui/handle/1/2905
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Geografia'
Programa de Pós-Graduação em Geografia
UEM
Maringá, PR
Centro de Ciências Humanas, Letras e Artes
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Geografia'
Programa de Pós-Graduação em Geografia
UEM
Maringá, PR
Centro de Ciências Humanas, Letras e Artes
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1813258657321713664