Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Acta Scientiarum Biological Sciences |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/view/59893 |
Resumo: | The potential of chitosan as a blood lead chelator and an antioxidant had been proven, yet its ability was still not optimal. Chitosan had a relatively large molecular size, which reduced the effectivity of its distribution towards the tissues. Gamma Co-60 irradiation technique was presumably applicable to solve the issue. The antioxidant activity of chitosan could also be optimized by the addition of vitamin E. This study aimed to analyze the antioxidant activity of the combination of Gamma Co-60 irradiated chitosan and vitamin E in lead acetate-induced rats. Twenty-four rats, which were distributed in six groups, were treated using the combination of gamma Co-60 irradiated chitosan at a dose of 150 kGy and vitamin E 1000 IU. All groups, except for the naïve group, were induced with lead acetate. The positive control group was induced with only lead acetate, while treatment group 1 had an additional treatment of irradiated chitosan. The treatment groups 2-4 were treated using the combination of irradiated chitosan and vitamin E in increasing doses respectively for forty days. Blood serum was collected for measurement of Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), and Malondialdehyde (MDA). The results showed that the provided treatment increased the enzymatic activity of SOD, CAT, and GPx, and reduced the MDA level in lead acetate-induced rats. However, as the vitamin E dosage was increased, it posed several side effects. It was concluded that the combination Gamma Co-60 irradiated chitosan and vitamin E increased the activity of various endogenous antioxidant enzymes and decreased lipid peroxidation, dependent on the amount of vitamin E. |
id |
UEM-1_1263fc5498ba3f810c4ccc3ab5ffac66 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/59893 |
network_acronym_str |
UEM-1 |
network_name_str |
Acta Scientiarum Biological Sciences |
repository_id_str |
|
spelling |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced ratsAntioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced ratslead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes.lead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes.The potential of chitosan as a blood lead chelator and an antioxidant had been proven, yet its ability was still not optimal. Chitosan had a relatively large molecular size, which reduced the effectivity of its distribution towards the tissues. Gamma Co-60 irradiation technique was presumably applicable to solve the issue. The antioxidant activity of chitosan could also be optimized by the addition of vitamin E. This study aimed to analyze the antioxidant activity of the combination of Gamma Co-60 irradiated chitosan and vitamin E in lead acetate-induced rats. Twenty-four rats, which were distributed in six groups, were treated using the combination of gamma Co-60 irradiated chitosan at a dose of 150 kGy and vitamin E 1000 IU. All groups, except for the naïve group, were induced with lead acetate. The positive control group was induced with only lead acetate, while treatment group 1 had an additional treatment of irradiated chitosan. The treatment groups 2-4 were treated using the combination of irradiated chitosan and vitamin E in increasing doses respectively for forty days. Blood serum was collected for measurement of Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), and Malondialdehyde (MDA). The results showed that the provided treatment increased the enzymatic activity of SOD, CAT, and GPx, and reduced the MDA level in lead acetate-induced rats. However, as the vitamin E dosage was increased, it posed several side effects. It was concluded that the combination Gamma Co-60 irradiated chitosan and vitamin E increased the activity of various endogenous antioxidant enzymes and decreased lipid peroxidation, dependent on the amount of vitamin E.The potential of chitosan as a blood lead chelator and an antioxidant had been proven, yet its ability was still not optimal. Chitosan had a relatively large molecular size, which reduced the effectivity of its distribution towards the tissues. Gamma Co-60 irradiation technique was presumably applicable to solve the issue. The antioxidant activity of chitosan could also be optimized by the addition of vitamin E. This study aimed to analyze the antioxidant activity of the combination of Gamma Co-60 irradiated chitosan and vitamin E in lead acetate-induced rats. Twenty-four rats, which were distributed in six groups, were treated using the combination of gamma Co-60 irradiated chitosan at a dose of 150 kGy and vitamin E 1000 IU. All groups, except for the naïve group, were induced with lead acetate. The positive control group was induced with only lead acetate, while treatment group 1 had an additional treatment of irradiated chitosan. The treatment groups 2-4 were treated using the combination of irradiated chitosan and vitamin E in increasing doses respectively for forty days. Blood serum was collected for measurement of Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), and Malondialdehyde (MDA). The results showed that the provided treatment increased the enzymatic activity of SOD, CAT, and GPx, and reduced the MDA level in lead acetate-induced rats. However, as the vitamin E dosage was increased, it posed several side effects. It was concluded that the combination Gamma Co-60 irradiated chitosan and vitamin E increased the activity of various endogenous antioxidant enzymes and decreased lipid peroxidation, dependent on the amount of vitamin E.Universidade Estadual De Maringá2022-05-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/view/5989310.4025/actascibiolsci.v44i1.59893Acta Scientiarum. Biological Sciences; Vol 44 (2022): Publicação contínua; e59893Acta Scientiarum. Biological Sciences; v. 44 (2022): Publicação contínua; e598931807-863X1679-9283reponame:Acta Scientiarum Biological Sciencesinstname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/view/59893/751375154207Copyright (c) 2022 Acta Scientiarum. Biological Scienceshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMarianti, AdityaAnggraito, Yustinus Ulung Christijanti, Wulan 2022-06-22T14:08:03Zoai:periodicos.uem.br/ojs:article/59893Revistahttp://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSciPUBhttp://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/oai||actabiol@uem.br1807-863X1679-9283opendoar:2022-06-22T14:08:03Acta Scientiarum Biological Sciences - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats |
title |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats |
spellingShingle |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats Marianti, Aditya lead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes. lead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes. |
title_short |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats |
title_full |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats |
title_fullStr |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats |
title_full_unstemmed |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats |
title_sort |
Antioxidant activity of gamma cobalt-60 irradiated chitosan and vitamin E combination to lead acetate-induced rats |
author |
Marianti, Aditya |
author_facet |
Marianti, Aditya Anggraito, Yustinus Ulung Christijanti, Wulan |
author_role |
author |
author2 |
Anggraito, Yustinus Ulung Christijanti, Wulan |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Marianti, Aditya Anggraito, Yustinus Ulung Christijanti, Wulan |
dc.subject.por.fl_str_mv |
lead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes. lead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes. |
topic |
lead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes. lead intoxication; irradiated chitosan; tocopherol; antioxidant enzymes. |
description |
The potential of chitosan as a blood lead chelator and an antioxidant had been proven, yet its ability was still not optimal. Chitosan had a relatively large molecular size, which reduced the effectivity of its distribution towards the tissues. Gamma Co-60 irradiation technique was presumably applicable to solve the issue. The antioxidant activity of chitosan could also be optimized by the addition of vitamin E. This study aimed to analyze the antioxidant activity of the combination of Gamma Co-60 irradiated chitosan and vitamin E in lead acetate-induced rats. Twenty-four rats, which were distributed in six groups, were treated using the combination of gamma Co-60 irradiated chitosan at a dose of 150 kGy and vitamin E 1000 IU. All groups, except for the naïve group, were induced with lead acetate. The positive control group was induced with only lead acetate, while treatment group 1 had an additional treatment of irradiated chitosan. The treatment groups 2-4 were treated using the combination of irradiated chitosan and vitamin E in increasing doses respectively for forty days. Blood serum was collected for measurement of Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), and Malondialdehyde (MDA). The results showed that the provided treatment increased the enzymatic activity of SOD, CAT, and GPx, and reduced the MDA level in lead acetate-induced rats. However, as the vitamin E dosage was increased, it posed several side effects. It was concluded that the combination Gamma Co-60 irradiated chitosan and vitamin E increased the activity of various endogenous antioxidant enzymes and decreased lipid peroxidation, dependent on the amount of vitamin E. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-18 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/view/59893 10.4025/actascibiolsci.v44i1.59893 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/view/59893 |
identifier_str_mv |
10.4025/actascibiolsci.v44i1.59893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/view/59893/751375154207 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Acta Scientiarum. Biological Sciences http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Acta Scientiarum. Biological Sciences http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Biological Sciences; Vol 44 (2022): Publicação contínua; e59893 Acta Scientiarum. Biological Sciences; v. 44 (2022): Publicação contínua; e59893 1807-863X 1679-9283 reponame:Acta Scientiarum Biological Sciences instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta Scientiarum Biological Sciences |
collection |
Acta Scientiarum Biological Sciences |
repository.name.fl_str_mv |
Acta Scientiarum Biological Sciences - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actabiol@uem.br |
_version_ |
1799317398003646464 |