Big Data: truth, quasi-truth or post-truth?

Detalhes bibliográficos
Autor(a) principal: Cavassane, Ricardo Peraça
Data de Publicação: 2020
Outros Autores: D’Ottaviano, Itala Maria Loffredo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta Scientiarum. Human and Social Sciences (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/article/view/56201
Resumo: In this paper we investigate if sentences presented as the result of the application of statistical models and artificial intelligence to large volumes of data – the so-called ‘Big Data’ – can be characterized as semantically true, or as quasi-true, or even if such sentences can only be characterized as probably quasi-false and, in a certain way, post-true; that is, if, in the context of Big Data, the representation of a data domain can be configured as a total structure, or as a partial structure provided with a set of sentences assumed to be true, or if such representation cannot be configured as a partial structure provided with a set of sentences assumed to be true.
id UEM-3_83dd9e96e53fb5a740a71809c9bba934
oai_identifier_str oai:periodicos.uem.br/ojs:article/56201
network_acronym_str UEM-3
network_name_str Acta Scientiarum. Human and Social Sciences (Online)
repository_id_str
spelling Big Data: truth, quasi-truth or post-truth?Big Data: truth, quasi-truth or post-truth?Big data; structure; partial structure; truth; quasi-truth; post-truth.Big data; structure; partial structure; truth; quasi-truth; post-truth. In this paper we investigate if sentences presented as the result of the application of statistical models and artificial intelligence to large volumes of data – the so-called ‘Big Data’ – can be characterized as semantically true, or as quasi-true, or even if such sentences can only be characterized as probably quasi-false and, in a certain way, post-true; that is, if, in the context of Big Data, the representation of a data domain can be configured as a total structure, or as a partial structure provided with a set of sentences assumed to be true, or if such representation cannot be configured as a partial structure provided with a set of sentences assumed to be true. In this paper we investigate if sentences presented as the result of the application of statistical models and artificial intelligence to large volumes of data – the so-called ‘Big Data’ – can be characterized as semantically true, or as quasi-true, or even if such sentences can only be characterized as probably quasi-false and, in a certain way, post-true; that is, if, in the context of Big Data, the representation of a data domain can be configured as a total structure, or as a partial structure provided with a set of sentences assumed to be true, or if such representation cannot be configured as a partial structure provided with a set of sentences assumed to be true.Universidade Estadual De Maringá2020-12-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/article/view/5620110.4025/actascihumansoc.v42i3.56201Acta Scientiarum. Human and Social Sciences; Vol 42 No 3 (2020); e56201Acta Scientiarum. Human and Social Sciences; v. 42 n. 3 (2020); e562011807-86561679-7361reponame:Acta Scientiarum. Human and Social Sciences (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/article/view/56201/751375151419Copyright (c) 2020 Acta Scientiarum. Human and Social Scienceshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCavassane, Ricardo Peraça D’Ottaviano, Itala Maria Loffredo 2021-02-10T19:30:07Zoai:periodicos.uem.br/ojs:article/56201Revistahttp://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/indexPUBhttp://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/oai||actahuman@uem.br1807-86561679-7361opendoar:2021-02-10T19:30:07Acta Scientiarum. Human and Social Sciences (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Big Data: truth, quasi-truth or post-truth?
Big Data: truth, quasi-truth or post-truth?
title Big Data: truth, quasi-truth or post-truth?
spellingShingle Big Data: truth, quasi-truth or post-truth?
Cavassane, Ricardo Peraça
Big data; structure; partial structure; truth; quasi-truth; post-truth.
Big data; structure; partial structure; truth; quasi-truth; post-truth.
title_short Big Data: truth, quasi-truth or post-truth?
title_full Big Data: truth, quasi-truth or post-truth?
title_fullStr Big Data: truth, quasi-truth or post-truth?
title_full_unstemmed Big Data: truth, quasi-truth or post-truth?
title_sort Big Data: truth, quasi-truth or post-truth?
author Cavassane, Ricardo Peraça
author_facet Cavassane, Ricardo Peraça
D’Ottaviano, Itala Maria Loffredo
author_role author
author2 D’Ottaviano, Itala Maria Loffredo
author2_role author
dc.contributor.author.fl_str_mv Cavassane, Ricardo Peraça
D’Ottaviano, Itala Maria Loffredo
dc.subject.por.fl_str_mv Big data; structure; partial structure; truth; quasi-truth; post-truth.
Big data; structure; partial structure; truth; quasi-truth; post-truth.
topic Big data; structure; partial structure; truth; quasi-truth; post-truth.
Big data; structure; partial structure; truth; quasi-truth; post-truth.
description In this paper we investigate if sentences presented as the result of the application of statistical models and artificial intelligence to large volumes of data – the so-called ‘Big Data’ – can be characterized as semantically true, or as quasi-true, or even if such sentences can only be characterized as probably quasi-false and, in a certain way, post-true; that is, if, in the context of Big Data, the representation of a data domain can be configured as a total structure, or as a partial structure provided with a set of sentences assumed to be true, or if such representation cannot be configured as a partial structure provided with a set of sentences assumed to be true.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/article/view/56201
10.4025/actascihumansoc.v42i3.56201
url http://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/article/view/56201
identifier_str_mv 10.4025/actascihumansoc.v42i3.56201
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/article/view/56201/751375151419
dc.rights.driver.fl_str_mv Copyright (c) 2020 Acta Scientiarum. Human and Social Sciences
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Acta Scientiarum. Human and Social Sciences
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Human and Social Sciences; Vol 42 No 3 (2020); e56201
Acta Scientiarum. Human and Social Sciences; v. 42 n. 3 (2020); e56201
1807-8656
1679-7361
reponame:Acta Scientiarum. Human and Social Sciences (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta Scientiarum. Human and Social Sciences (Online)
collection Acta Scientiarum. Human and Social Sciences (Online)
repository.name.fl_str_mv Acta Scientiarum. Human and Social Sciences (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actahuman@uem.br
_version_ 1799317509676990464