Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014

Detalhes bibliográficos
Autor(a) principal: Seffrin, Rodolfo
Data de Publicação: 2018
Outros Autores: Araújo, Everton Coimbra De, Bazzi, Claudio Leones
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta Scientiarum. Agronomy (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciAgron/article/view/36494
Resumo: This study aimed to identify areas that showed spatial autocorrelation for corn yield and its predictive variables (i.e., average air temperature, rainfall, solar radiation, soil agricultural potential and altitude) and to determine the most appropriate spatial regression model to explain this culture. The study was conducted using data from the municipalities of the state of Paraná relating to the summer harvests in 2011/2012, 2012/2013, and 2013/2014. The statistical diagnostic of the OLS (Ordinary Least Square regression model) was employed to determine the most suitable regression model to predict corn yield. The SAR (Spatial Lag Model) was recommended for all crop years; however, the Spatial Error Model (CAR) was recommended only for the 2013/2014 crop year. The SAR and CAR spatial regressions chosen to predict corn yield in the various years had better results when compared to a regression model that does not incorporate data spatial autocorrelation (OLS). The coefficient of determination (R²), the Bayesian information criteria (BIC) and the maximum value of the logarithm of likelihood function proved to be better for the estimation of corn yield when SAR and CAR were used. 
id UEM-5_1618685755ba3bb61a36dfd69b1bec88
oai_identifier_str oai:periodicos.uem.br/ojs:article/36494
network_acronym_str UEM-5
network_name_str Acta Scientiarum. Agronomy (Online)
repository_id_str
spelling Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014autoregressive spatial modelmoran’s indexspatial autocorrelationspatial error modelspatial regression.Produção de CulturaGeomáticaThis study aimed to identify areas that showed spatial autocorrelation for corn yield and its predictive variables (i.e., average air temperature, rainfall, solar radiation, soil agricultural potential and altitude) and to determine the most appropriate spatial regression model to explain this culture. The study was conducted using data from the municipalities of the state of Paraná relating to the summer harvests in 2011/2012, 2012/2013, and 2013/2014. The statistical diagnostic of the OLS (Ordinary Least Square regression model) was employed to determine the most suitable regression model to predict corn yield. The SAR (Spatial Lag Model) was recommended for all crop years; however, the Spatial Error Model (CAR) was recommended only for the 2013/2014 crop year. The SAR and CAR spatial regressions chosen to predict corn yield in the various years had better results when compared to a regression model that does not incorporate data spatial autocorrelation (OLS). The coefficient of determination (R²), the Bayesian information criteria (BIC) and the maximum value of the logarithm of likelihood function proved to be better for the estimation of corn yield when SAR and CAR were used. Universidade Estadual de Maringá2018-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciAgron/article/view/3649410.4025/actasciagron.v40i1.36494Acta Scientiarum. Agronomy; Vol 40 (2018): Publicação Contínua; e36494Acta Scientiarum. Agronomy; v. 40 (2018): Publicação Contínua; e364941807-86211679-9275reponame:Acta Scientiarum. Agronomy (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciAgron/article/view/36494/pdfCopyright (c) 2018 Acta Scientiarum. Agronomyinfo:eu-repo/semantics/openAccessSeffrin, RodolfoAraújo, Everton Coimbra DeBazzi, Claudio Leones2019-09-24T12:26:47Zoai:periodicos.uem.br/ojs:article/36494Revistahttp://www.periodicos.uem.br/ojs/index.php/ActaSciAgronPUBhttp://www.periodicos.uem.br/ojs/index.php/ActaSciAgron/oaiactaagron@uem.br||actaagron@uem.br|| edamasio@uem.br1807-86211679-9275opendoar:2019-09-24T12:26:47Acta Scientiarum. Agronomy (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
title Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
spellingShingle Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
Seffrin, Rodolfo
autoregressive spatial model
moran’s index
spatial autocorrelation
spatial error model
spatial regression.
Produção de Cultura
Geomática
title_short Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
title_full Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
title_fullStr Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
title_full_unstemmed Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
title_sort Regression models for prediction of corn yield in the state of Paraná (Brazil) from 2012 to 2014
author Seffrin, Rodolfo
author_facet Seffrin, Rodolfo
Araújo, Everton Coimbra De
Bazzi, Claudio Leones
author_role author
author2 Araújo, Everton Coimbra De
Bazzi, Claudio Leones
author2_role author
author
dc.contributor.author.fl_str_mv Seffrin, Rodolfo
Araújo, Everton Coimbra De
Bazzi, Claudio Leones
dc.subject.por.fl_str_mv autoregressive spatial model
moran’s index
spatial autocorrelation
spatial error model
spatial regression.
Produção de Cultura
Geomática
topic autoregressive spatial model
moran’s index
spatial autocorrelation
spatial error model
spatial regression.
Produção de Cultura
Geomática
description This study aimed to identify areas that showed spatial autocorrelation for corn yield and its predictive variables (i.e., average air temperature, rainfall, solar radiation, soil agricultural potential and altitude) and to determine the most appropriate spatial regression model to explain this culture. The study was conducted using data from the municipalities of the state of Paraná relating to the summer harvests in 2011/2012, 2012/2013, and 2013/2014. The statistical diagnostic of the OLS (Ordinary Least Square regression model) was employed to determine the most suitable regression model to predict corn yield. The SAR (Spatial Lag Model) was recommended for all crop years; however, the Spatial Error Model (CAR) was recommended only for the 2013/2014 crop year. The SAR and CAR spatial regressions chosen to predict corn yield in the various years had better results when compared to a regression model that does not incorporate data spatial autocorrelation (OLS). The coefficient of determination (R²), the Bayesian information criteria (BIC) and the maximum value of the logarithm of likelihood function proved to be better for the estimation of corn yield when SAR and CAR were used. 
publishDate 2018
dc.date.none.fl_str_mv 2018-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciAgron/article/view/36494
10.4025/actasciagron.v40i1.36494
url http://www.periodicos.uem.br/ojs/index.php/ActaSciAgron/article/view/36494
identifier_str_mv 10.4025/actasciagron.v40i1.36494
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciAgron/article/view/36494/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2018 Acta Scientiarum. Agronomy
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Acta Scientiarum. Agronomy
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
publisher.none.fl_str_mv Universidade Estadual de Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Agronomy; Vol 40 (2018): Publicação Contínua; e36494
Acta Scientiarum. Agronomy; v. 40 (2018): Publicação Contínua; e36494
1807-8621
1679-9275
reponame:Acta Scientiarum. Agronomy (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta Scientiarum. Agronomy (Online)
collection Acta Scientiarum. Agronomy (Online)
repository.name.fl_str_mv Acta Scientiarum. Agronomy (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv actaagron@uem.br||actaagron@uem.br|| edamasio@uem.br
_version_ 1799305910497050624