Development of an adaptive genetic algorithm for simulation optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986 |
Resumo: | Optimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm’s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package. |
id |
UEM-6_093c3b6212546c88ef9f85c8bda62e01 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/25986 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Development of an adaptive genetic algorithm for simulation optimizationdiscrete-event simulationmeta-heuristicoptimization methodscomputational timePesquisa OperacionalOptimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm’s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package. Universidade Estadual De Maringá2015-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSimulation; Experimentationapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2598610.4025/actascitechnol.v37i3.25986Acta Scientiarum. Technology; Vol 37 No 3 (2015); 321-328Acta Scientiarum. Technology; v. 37 n. 3 (2015); 321-3281806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986/pdf_95Miranda, Rafael de CarvalhoMontevechi, José Arnaldo BarraPinho, Alexandre Ferreirainfo:eu-repo/semantics/openAccess2015-09-11T09:21:42Zoai:periodicos.uem.br/ojs:article/25986Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2015-09-11T09:21:42Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Development of an adaptive genetic algorithm for simulation optimization |
title |
Development of an adaptive genetic algorithm for simulation optimization |
spellingShingle |
Development of an adaptive genetic algorithm for simulation optimization Miranda, Rafael de Carvalho discrete-event simulation meta-heuristic optimization methods computational time Pesquisa Operacional |
title_short |
Development of an adaptive genetic algorithm for simulation optimization |
title_full |
Development of an adaptive genetic algorithm for simulation optimization |
title_fullStr |
Development of an adaptive genetic algorithm for simulation optimization |
title_full_unstemmed |
Development of an adaptive genetic algorithm for simulation optimization |
title_sort |
Development of an adaptive genetic algorithm for simulation optimization |
author |
Miranda, Rafael de Carvalho |
author_facet |
Miranda, Rafael de Carvalho Montevechi, José Arnaldo Barra Pinho, Alexandre Ferreira |
author_role |
author |
author2 |
Montevechi, José Arnaldo Barra Pinho, Alexandre Ferreira |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Miranda, Rafael de Carvalho Montevechi, José Arnaldo Barra Pinho, Alexandre Ferreira |
dc.subject.por.fl_str_mv |
discrete-event simulation meta-heuristic optimization methods computational time Pesquisa Operacional |
topic |
discrete-event simulation meta-heuristic optimization methods computational time Pesquisa Operacional |
description |
Optimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm’s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Simulation; Experimentation |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986 10.4025/actascitechnol.v37i3.25986 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986 |
identifier_str_mv |
10.4025/actascitechnol.v37i3.25986 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986/pdf_95 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 37 No 3 (2015); 321-328 Acta Scientiarum. Technology; v. 37 n. 3 (2015); 321-328 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315335480868864 |