Development of an adaptive genetic algorithm for simulation optimization

Detalhes bibliográficos
Autor(a) principal: Miranda, Rafael de Carvalho
Data de Publicação: 2015
Outros Autores: Montevechi, José Arnaldo Barra, Pinho, Alexandre Ferreira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986
Resumo: Optimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm’s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package.  
id UEM-6_093c3b6212546c88ef9f85c8bda62e01
oai_identifier_str oai:periodicos.uem.br/ojs:article/25986
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Development of an adaptive genetic algorithm for simulation optimizationdiscrete-event simulationmeta-heuristicoptimization methodscomputational timePesquisa OperacionalOptimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm’s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package.  Universidade Estadual De Maringá2015-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSimulation; Experimentationapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2598610.4025/actascitechnol.v37i3.25986Acta Scientiarum. Technology; Vol 37 No 3 (2015); 321-328Acta Scientiarum. Technology; v. 37 n. 3 (2015); 321-3281806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986/pdf_95Miranda, Rafael de CarvalhoMontevechi, José Arnaldo BarraPinho, Alexandre Ferreirainfo:eu-repo/semantics/openAccess2015-09-11T09:21:42Zoai:periodicos.uem.br/ojs:article/25986Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2015-09-11T09:21:42Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Development of an adaptive genetic algorithm for simulation optimization
title Development of an adaptive genetic algorithm for simulation optimization
spellingShingle Development of an adaptive genetic algorithm for simulation optimization
Miranda, Rafael de Carvalho
discrete-event simulation
meta-heuristic
optimization methods
computational time
Pesquisa Operacional
title_short Development of an adaptive genetic algorithm for simulation optimization
title_full Development of an adaptive genetic algorithm for simulation optimization
title_fullStr Development of an adaptive genetic algorithm for simulation optimization
title_full_unstemmed Development of an adaptive genetic algorithm for simulation optimization
title_sort Development of an adaptive genetic algorithm for simulation optimization
author Miranda, Rafael de Carvalho
author_facet Miranda, Rafael de Carvalho
Montevechi, José Arnaldo Barra
Pinho, Alexandre Ferreira
author_role author
author2 Montevechi, José Arnaldo Barra
Pinho, Alexandre Ferreira
author2_role author
author
dc.contributor.author.fl_str_mv Miranda, Rafael de Carvalho
Montevechi, José Arnaldo Barra
Pinho, Alexandre Ferreira
dc.subject.por.fl_str_mv discrete-event simulation
meta-heuristic
optimization methods
computational time
Pesquisa Operacional
topic discrete-event simulation
meta-heuristic
optimization methods
computational time
Pesquisa Operacional
description Optimization methods in discrete-event simulation have become widespread in numerous applications. However, the methods´ performance falls sharply in terms of computational time when more than one decision variable is handled. Current assay develops an adaptive genetic algorithm for the simulation optimization capable of achieving satisfactory results in time efficiency and response quality when compared to optimization software packages on the market. A series of experiments was elaborated to define the algorithm’s most significant parameters and to propose adaptations. According to the results, the most significant parameters are population size and number of generations. Further, adaptive strategies were proposed for these parameters which enabled the algorithm to obtain good results in response quality and time necessary to converge when compared to a commercial software package.  
publishDate 2015
dc.date.none.fl_str_mv 2015-07-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Simulation; Experimentation
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986
10.4025/actascitechnol.v37i3.25986
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986
identifier_str_mv 10.4025/actascitechnol.v37i3.25986
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25986/pdf_95
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 37 No 3 (2015); 321-328
Acta Scientiarum. Technology; v. 37 n. 3 (2015); 321-328
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315335480868864