Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/58806 |
Resumo: | In the present study, the microalga Spirulina platensis (Arthrospira) was grown in two horizontal photobioreactors (HPBR) under two different irradiances (150 and 270 μmol m-2 s-2). Anaerobically digested cattle wastewater (ACWW) was used as substrate. The experiment was carried out in batches for a period of 8 days. The maximum specific growth rate of 0.347 day-1 and the doubling time of 2.08 days were obtained under the highest illumination of the culture. Dry biomass production reached maximum values between 2.17 g L-1 and 6.52 g L-1, with volumetric biomass productivities between 0.0812 and 0.5578 g L-1 day-1. Productivity per area was equal to 47.97 g m-2 d-1, which is the highest value recorded compared to those found in the literature consulted. As for CO2 biofixation, relevant values for reducing this gas in the atmosphere were obtained, ranging from 128.52 to 882.36 mg L-1 day-1. In terms of organic matter, 16.3-77% of BOD5 and 12.6-61.6% of COD were reduced. In the reduction of TS, TSS and VSS, values of 71.3-78.5%, 79.5-84.4% and 87.0-88.3%, respectively, were reached. NH4+ reduction was 32.5-98.3%, organic nitrogen reduction was 20.3-95.9% and total phosphorus reduction was 33.5-89.9%. The reductions of thermotolerant coliforms were between 71.7% and 99.9%. In view of the results found, it can be considered that the bioremediation of the effluent reached promising efficiencies, with the advantage of producing biomass with potential to obtain bioproducts of relevant economic value |
id |
UEM-6_09ff9b3bf01613734697e0b4c75f64e6 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/58806 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediationUse of the cyanobacterium Spirulina platensis in cattle wastewater bioremediationPollution control; Spirulina platensis; CO2 biofixation; bioresource.Pollution control; Spirulina platensis; CO2 biofixation; bioresource.In the present study, the microalga Spirulina platensis (Arthrospira) was grown in two horizontal photobioreactors (HPBR) under two different irradiances (150 and 270 μmol m-2 s-2). Anaerobically digested cattle wastewater (ACWW) was used as substrate. The experiment was carried out in batches for a period of 8 days. The maximum specific growth rate of 0.347 day-1 and the doubling time of 2.08 days were obtained under the highest illumination of the culture. Dry biomass production reached maximum values between 2.17 g L-1 and 6.52 g L-1, with volumetric biomass productivities between 0.0812 and 0.5578 g L-1 day-1. Productivity per area was equal to 47.97 g m-2 d-1, which is the highest value recorded compared to those found in the literature consulted. As for CO2 biofixation, relevant values for reducing this gas in the atmosphere were obtained, ranging from 128.52 to 882.36 mg L-1 day-1. In terms of organic matter, 16.3-77% of BOD5 and 12.6-61.6% of COD were reduced. In the reduction of TS, TSS and VSS, values of 71.3-78.5%, 79.5-84.4% and 87.0-88.3%, respectively, were reached. NH4+ reduction was 32.5-98.3%, organic nitrogen reduction was 20.3-95.9% and total phosphorus reduction was 33.5-89.9%. The reductions of thermotolerant coliforms were between 71.7% and 99.9%. In view of the results found, it can be considered that the bioremediation of the effluent reached promising efficiencies, with the advantage of producing biomass with potential to obtain bioproducts of relevant economic valueIn the present study, the microalga Spirulina platensis (Arthrospira) was grown in two horizontal photobioreactors (HPBR) under two different irradiances (150 and 270 μmol m-2 s-2). Anaerobically digested cattle wastewater (ACWW) was used as substrate. The experiment was carried out in batches for a period of 8 days. The maximum specific growth rate of 0.347 day-1 and the doubling time of 2.08 days were obtained under the highest illumination of the culture. Dry biomass production reached maximum values between 2.17 g L-1 and 6.52 g L-1, with volumetric biomass productivities between 0.0812 and 0.5578 g L-1 day-1. Productivity per area was equal to 47.97 g m-2 d-1, which is the highest value recorded compared to those found in the literature consulted. As for CO2 biofixation, relevant values for reducing this gas in the atmosphere were obtained, ranging from 128.52 to 882.36 mg L-1 day-1. In terms of organic matter, 16.3-77% of BOD5 and 12.6-61.6% of COD were reduced. In the reduction of TS, TSS and VSS, values of 71.3-78.5%, 79.5-84.4% and 87.0-88.3%, respectively, were reached. NH4+ reduction was 32.5-98.3%, organic nitrogen reduction was 20.3-95.9% and total phosphorus reduction was 33.5-89.9%. The reductions of thermotolerant coliforms were between 71.7% and 99.9%. In view of the results found, it can be considered that the bioremediation of the effluent reached promising efficiencies, with the advantage of producing biomass with potential to obtain bioproducts of relevant economic valueUniversidade Estadual De Maringá2022-03-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/5880610.4025/actascitechnol.v44i1.58806Acta Scientiarum. Technology; Vol 44 (2022): Publicação contínua; e58806Acta Scientiarum. Technology; v. 44 (2022): Publicação contínua; e588061806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/58806/751375153856Copyright (c) 2022 Acta Scientiarum. Technologyhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Denise Salvador de Valadão, Romulo Cardoso Nascentes, Alexandre Lioi Silva, Leonardo Duarte Batista daVieira de Mendonça, Henrique2022-04-01T17:54:50Zoai:periodicos.uem.br/ojs:article/58806Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2022-04-01T17:54:50Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation |
title |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation |
spellingShingle |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation Souza, Denise Salvador de Pollution control; Spirulina platensis; CO2 biofixation; bioresource. Pollution control; Spirulina platensis; CO2 biofixation; bioresource. |
title_short |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation |
title_full |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation |
title_fullStr |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation |
title_full_unstemmed |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation |
title_sort |
Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation |
author |
Souza, Denise Salvador de |
author_facet |
Souza, Denise Salvador de Valadão, Romulo Cardoso Nascentes, Alexandre Lioi Silva, Leonardo Duarte Batista da Vieira de Mendonça, Henrique |
author_role |
author |
author2 |
Valadão, Romulo Cardoso Nascentes, Alexandre Lioi Silva, Leonardo Duarte Batista da Vieira de Mendonça, Henrique |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Souza, Denise Salvador de Valadão, Romulo Cardoso Nascentes, Alexandre Lioi Silva, Leonardo Duarte Batista da Vieira de Mendonça, Henrique |
dc.subject.por.fl_str_mv |
Pollution control; Spirulina platensis; CO2 biofixation; bioresource. Pollution control; Spirulina platensis; CO2 biofixation; bioresource. |
topic |
Pollution control; Spirulina platensis; CO2 biofixation; bioresource. Pollution control; Spirulina platensis; CO2 biofixation; bioresource. |
description |
In the present study, the microalga Spirulina platensis (Arthrospira) was grown in two horizontal photobioreactors (HPBR) under two different irradiances (150 and 270 μmol m-2 s-2). Anaerobically digested cattle wastewater (ACWW) was used as substrate. The experiment was carried out in batches for a period of 8 days. The maximum specific growth rate of 0.347 day-1 and the doubling time of 2.08 days were obtained under the highest illumination of the culture. Dry biomass production reached maximum values between 2.17 g L-1 and 6.52 g L-1, with volumetric biomass productivities between 0.0812 and 0.5578 g L-1 day-1. Productivity per area was equal to 47.97 g m-2 d-1, which is the highest value recorded compared to those found in the literature consulted. As for CO2 biofixation, relevant values for reducing this gas in the atmosphere were obtained, ranging from 128.52 to 882.36 mg L-1 day-1. In terms of organic matter, 16.3-77% of BOD5 and 12.6-61.6% of COD were reduced. In the reduction of TS, TSS and VSS, values of 71.3-78.5%, 79.5-84.4% and 87.0-88.3%, respectively, were reached. NH4+ reduction was 32.5-98.3%, organic nitrogen reduction was 20.3-95.9% and total phosphorus reduction was 33.5-89.9%. The reductions of thermotolerant coliforms were between 71.7% and 99.9%. In view of the results found, it can be considered that the bioremediation of the effluent reached promising efficiencies, with the advantage of producing biomass with potential to obtain bioproducts of relevant economic value |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-11 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/58806 10.4025/actascitechnol.v44i1.58806 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/58806 |
identifier_str_mv |
10.4025/actascitechnol.v44i1.58806 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/58806/751375153856 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Acta Scientiarum. Technology http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Acta Scientiarum. Technology http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 44 (2022): Publicação contínua; e58806 Acta Scientiarum. Technology; v. 44 (2022): Publicação contínua; e58806 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315337981722624 |