Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097

Detalhes bibliográficos
Autor(a) principal: Lakshmanan, Kalaivani
Data de Publicação: 2014
Outros Autores: Perumal, Subburaj, Mariasiluvairaj, Willjuice Iruthayarajan
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097
Resumo: In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference System (ANFIS)-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI) controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives.  
id UEM-6_309300c08782d02284dce5714e5f0a71
oai_identifier_str oai:periodicos.uem.br/ojs:article/18097
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097switched reluctance motortorque ripple coefficientfuzzy logic control (FLC)adaptive neuro fuzzy inference system (ANFIS)proportional-integral (PI) controllerIn this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference System (ANFIS)-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI) controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives.  Universidade Estadual De Maringá2014-01-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1809710.4025/actascitechnol.v36i1.18097Acta Scientiarum. Technology; Vol 36 No 1 (2014); 33-40Acta Scientiarum. Technology; v. 36 n. 1 (2014); 33-401806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdf_1Lakshmanan, KalaivaniPerumal, SubburajMariasiluvairaj, Willjuice Iruthayarajaninfo:eu-repo/semantics/openAccess2014-04-10T07:53:24Zoai:periodicos.uem.br/ojs:article/18097Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2014-04-10T07:53:24Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
title Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
spellingShingle Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
Lakshmanan, Kalaivani
switched reluctance motor
torque ripple coefficient
fuzzy logic control (FLC)
adaptive neuro fuzzy inference system (ANFIS)
proportional-integral (PI) controller
title_short Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
title_full Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
title_fullStr Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
title_full_unstemmed Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
title_sort Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
author Lakshmanan, Kalaivani
author_facet Lakshmanan, Kalaivani
Perumal, Subburaj
Mariasiluvairaj, Willjuice Iruthayarajan
author_role author
author2 Perumal, Subburaj
Mariasiluvairaj, Willjuice Iruthayarajan
author2_role author
author
dc.contributor.author.fl_str_mv Lakshmanan, Kalaivani
Perumal, Subburaj
Mariasiluvairaj, Willjuice Iruthayarajan
dc.subject.por.fl_str_mv switched reluctance motor
torque ripple coefficient
fuzzy logic control (FLC)
adaptive neuro fuzzy inference system (ANFIS)
proportional-integral (PI) controller
topic switched reluctance motor
torque ripple coefficient
fuzzy logic control (FLC)
adaptive neuro fuzzy inference system (ANFIS)
proportional-integral (PI) controller
description In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference System (ANFIS)-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI) controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives.  
publishDate 2014
dc.date.none.fl_str_mv 2014-01-07
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097
10.4025/actascitechnol.v36i1.18097
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097
identifier_str_mv 10.4025/actascitechnol.v36i1.18097
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdf
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdf_1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 36 No 1 (2014); 33-40
Acta Scientiarum. Technology; v. 36 n. 1 (2014); 33-40
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315335005863936