Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097 |
Resumo: | In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference System (ANFIS)-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI) controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives. |
id |
UEM-6_309300c08782d02284dce5714e5f0a71 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/18097 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097switched reluctance motortorque ripple coefficientfuzzy logic control (FLC)adaptive neuro fuzzy inference system (ANFIS)proportional-integral (PI) controllerIn this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference System (ANFIS)-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI) controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives. Universidade Estadual De Maringá2014-01-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1809710.4025/actascitechnol.v36i1.18097Acta Scientiarum. Technology; Vol 36 No 1 (2014); 33-40Acta Scientiarum. Technology; v. 36 n. 1 (2014); 33-401806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdf_1Lakshmanan, KalaivaniPerumal, SubburajMariasiluvairaj, Willjuice Iruthayarajaninfo:eu-repo/semantics/openAccess2014-04-10T07:53:24Zoai:periodicos.uem.br/ojs:article/18097Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2014-04-10T07:53:24Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 |
title |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 |
spellingShingle |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 Lakshmanan, Kalaivani switched reluctance motor torque ripple coefficient fuzzy logic control (FLC) adaptive neuro fuzzy inference system (ANFIS) proportional-integral (PI) controller |
title_short |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 |
title_full |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 |
title_fullStr |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 |
title_full_unstemmed |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 |
title_sort |
Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097 |
author |
Lakshmanan, Kalaivani |
author_facet |
Lakshmanan, Kalaivani Perumal, Subburaj Mariasiluvairaj, Willjuice Iruthayarajan |
author_role |
author |
author2 |
Perumal, Subburaj Mariasiluvairaj, Willjuice Iruthayarajan |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Lakshmanan, Kalaivani Perumal, Subburaj Mariasiluvairaj, Willjuice Iruthayarajan |
dc.subject.por.fl_str_mv |
switched reluctance motor torque ripple coefficient fuzzy logic control (FLC) adaptive neuro fuzzy inference system (ANFIS) proportional-integral (PI) controller |
topic |
switched reluctance motor torque ripple coefficient fuzzy logic control (FLC) adaptive neuro fuzzy inference system (ANFIS) proportional-integral (PI) controller |
description |
In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference System (ANFIS)-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI) controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-07 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097 10.4025/actascitechnol.v36i1.18097 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097 |
identifier_str_mv |
10.4025/actascitechnol.v36i1.18097 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdf http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/18097/pdf_1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 36 No 1 (2014); 33-40 Acta Scientiarum. Technology; v. 36 n. 1 (2014); 33-40 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315335005863936 |