Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238 |
Resumo: | The interpolation capabilities of multilayer perceptron networks (MLP) were used to solve a system of ordinary differential equations that models an axial dispersed non-adiabatic fixed bed reactor. The methodologies described in this paper follow the first ones proposed by Lagaris et al. (1998, 2000), but enlarge them to differential models with mix boundary conditions and by the use of the penalty method to convert the original constrained to unconstrained optimization problem in training the MLP networks. The results are in agreement on those in Luize e Biscaia (1991), which were obtained by well-established numerical techniques as finite element and orthogonal collocation methods. The neural interpolation method used in this paper is easier to handle than the classical methods for numerical solution of differential equations, particularly for non-linear differential systems, and defines a global approximation, in analytic form, for problems solution. |
id |
UEM-6_3c7cd4d2069ccb81a61b4657c2cad4c0 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/2238 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238Resolução de um modelo de reator de leito fixo não adiabático com dispersão axial utilizando redes neurais artificiais - DOI: 10.4025/actascitechnol.v25i1.2238redes neuraisequações diferenciais3.00.00.00-9 EngenhariasThe interpolation capabilities of multilayer perceptron networks (MLP) were used to solve a system of ordinary differential equations that models an axial dispersed non-adiabatic fixed bed reactor. The methodologies described in this paper follow the first ones proposed by Lagaris et al. (1998, 2000), but enlarge them to differential models with mix boundary conditions and by the use of the penalty method to convert the original constrained to unconstrained optimization problem in training the MLP networks. The results are in agreement on those in Luize e Biscaia (1991), which were obtained by well-established numerical techniques as finite element and orthogonal collocation methods. The neural interpolation method used in this paper is easier to handle than the classical methods for numerical solution of differential equations, particularly for non-linear differential systems, and defines a global approximation, in analytic form, for problems solution.As capacidades de interpolação de redes perceptron multicamada (MLP) foram utilizadas para resolver um sistema de equações diferencias ordinárias que modela um reator não-adiabático com leito fixo e dispersão axial. As metodologias descritas neste artigo seguem as propostas por Lagaris et al. (1998, 2000), estendidas para modelos com condições de contorno mistas e pelo uso do método da penalidade para converter o problema de otimização original de restrito para irrestrito no treinamento das redes MLP. Os resultados são compatíveis com aqueles apresentados em Luize e Biscaia (1991), que foram obtidos com técnicas numéricas já consagradas, como elementos finitos e colocação ortogonal. O método de neuro-interpolação adotado neste artigo é de fácil manuseio se comparado com os métodos clássicos para solução numérica de equações diferenciais, particularmente para sistemas diferenciais não-lineares, e define uma aproximação global, na forma analítica, para a solução de problemas.Universidade Estadual De Maringá2008-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/223810.4025/actascitechnol.v25i1.2238Acta Scientiarum. Technology; Vol 25 No 1 (2003); 39-44Acta Scientiarum. Technology; v. 25 n. 1 (2003); 39-441806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238/1341Silva, Luiz Henry Monken eNeitzel, IvoLima, Ed Pinheiroinfo:eu-repo/semantics/openAccess2024-05-17T13:02:42Zoai:periodicos.uem.br/ojs:article/2238Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:02:42Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 Resolução de um modelo de reator de leito fixo não adiabático com dispersão axial utilizando redes neurais artificiais - DOI: 10.4025/actascitechnol.v25i1.2238 |
title |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 |
spellingShingle |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 Silva, Luiz Henry Monken e redes neurais equações diferenciais 3.00.00.00-9 Engenharias |
title_short |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 |
title_full |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 |
title_fullStr |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 |
title_full_unstemmed |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 |
title_sort |
Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238 |
author |
Silva, Luiz Henry Monken e |
author_facet |
Silva, Luiz Henry Monken e Neitzel, Ivo Lima, Ed Pinheiro |
author_role |
author |
author2 |
Neitzel, Ivo Lima, Ed Pinheiro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Luiz Henry Monken e Neitzel, Ivo Lima, Ed Pinheiro |
dc.subject.por.fl_str_mv |
redes neurais equações diferenciais 3.00.00.00-9 Engenharias |
topic |
redes neurais equações diferenciais 3.00.00.00-9 Engenharias |
description |
The interpolation capabilities of multilayer perceptron networks (MLP) were used to solve a system of ordinary differential equations that models an axial dispersed non-adiabatic fixed bed reactor. The methodologies described in this paper follow the first ones proposed by Lagaris et al. (1998, 2000), but enlarge them to differential models with mix boundary conditions and by the use of the penalty method to convert the original constrained to unconstrained optimization problem in training the MLP networks. The results are in agreement on those in Luize e Biscaia (1991), which were obtained by well-established numerical techniques as finite element and orthogonal collocation methods. The neural interpolation method used in this paper is easier to handle than the classical methods for numerical solution of differential equations, particularly for non-linear differential systems, and defines a global approximation, in analytic form, for problems solution. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-04-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238 10.4025/actascitechnol.v25i1.2238 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238 |
identifier_str_mv |
10.4025/actascitechnol.v25i1.2238 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238/1341 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 25 No 1 (2003); 39-44 Acta Scientiarum. Technology; v. 25 n. 1 (2003); 39-44 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315332075094016 |