Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238

Detalhes bibliográficos
Autor(a) principal: Silva, Luiz Henry Monken e
Data de Publicação: 2008
Outros Autores: Neitzel, Ivo, Lima, Ed Pinheiro
Tipo de documento: Artigo
Idioma: por
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238
Resumo: The interpolation capabilities of multilayer perceptron networks (MLP) were used to solve a system of ordinary differential equations that models an axial dispersed non-adiabatic fixed bed reactor. The methodologies described in this paper follow the first ones proposed by Lagaris et al. (1998, 2000), but enlarge them to differential models with mix boundary conditions and by the use of the penalty method to convert the original constrained to unconstrained optimization problem in training the MLP networks. The results are in agreement on those in Luize e Biscaia (1991), which were obtained by well-established numerical techniques as finite element and orthogonal collocation methods. The neural interpolation method used in this paper is easier to handle than the classical methods for numerical solution of differential equations, particularly for non-linear differential systems, and defines a global approximation, in analytic form, for problems solution.
id UEM-6_3c7cd4d2069ccb81a61b4657c2cad4c0
oai_identifier_str oai:periodicos.uem.br/ojs:article/2238
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238Resolução de um modelo de reator de leito fixo não adiabático com dispersão axial utilizando redes neurais artificiais - DOI: 10.4025/actascitechnol.v25i1.2238redes neuraisequações diferenciais3.00.00.00-9 EngenhariasThe interpolation capabilities of multilayer perceptron networks (MLP) were used to solve a system of ordinary differential equations that models an axial dispersed non-adiabatic fixed bed reactor. The methodologies described in this paper follow the first ones proposed by Lagaris et al. (1998, 2000), but enlarge them to differential models with mix boundary conditions and by the use of the penalty method to convert the original constrained to unconstrained optimization problem in training the MLP networks. The results are in agreement on those in Luize e Biscaia (1991), which were obtained by well-established numerical techniques as finite element and orthogonal collocation methods. The neural interpolation method used in this paper is easier to handle than the classical methods for numerical solution of differential equations, particularly for non-linear differential systems, and defines a global approximation, in analytic form, for problems solution.As capacidades de interpolação de redes perceptron multicamada (MLP) foram utilizadas para resolver um sistema de equações diferencias ordinárias que modela um reator não-adiabático com leito fixo e dispersão axial. As metodologias descritas neste artigo seguem as propostas por Lagaris et al. (1998, 2000), estendidas para modelos com condições de contorno mistas e pelo uso do método da penalidade para converter o problema de otimização original de restrito para irrestrito no treinamento das redes MLP. Os resultados são compatíveis com aqueles apresentados em Luize e Biscaia (1991), que foram obtidos com técnicas numéricas já consagradas, como elementos finitos e colocação ortogonal. O método de neuro-interpolação adotado neste artigo é de fácil manuseio se comparado com os métodos clássicos para solução numérica de equações diferenciais, particularmente para sistemas diferenciais não-lineares, e define uma aproximação global, na forma analítica, para a solução de problemas.Universidade Estadual De Maringá2008-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/223810.4025/actascitechnol.v25i1.2238Acta Scientiarum. Technology; Vol 25 No 1 (2003); 39-44Acta Scientiarum. Technology; v. 25 n. 1 (2003); 39-441806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238/1341Silva, Luiz Henry Monken eNeitzel, IvoLima, Ed Pinheiroinfo:eu-repo/semantics/openAccess2024-05-17T13:02:42Zoai:periodicos.uem.br/ojs:article/2238Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:02:42Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
Resolução de um modelo de reator de leito fixo não adiabático com dispersão axial utilizando redes neurais artificiais - DOI: 10.4025/actascitechnol.v25i1.2238
title Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
spellingShingle Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
Silva, Luiz Henry Monken e
redes neurais
equações diferenciais
3.00.00.00-9 Engenharias
title_short Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
title_full Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
title_fullStr Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
title_full_unstemmed Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
title_sort Model resolution of an axial dispersed non-adiabatic fixed bed reactor using artificial neural networks - DOI: 10.4025/actascitechnol.v25i1.2238
author Silva, Luiz Henry Monken e
author_facet Silva, Luiz Henry Monken e
Neitzel, Ivo
Lima, Ed Pinheiro
author_role author
author2 Neitzel, Ivo
Lima, Ed Pinheiro
author2_role author
author
dc.contributor.author.fl_str_mv Silva, Luiz Henry Monken e
Neitzel, Ivo
Lima, Ed Pinheiro
dc.subject.por.fl_str_mv redes neurais
equações diferenciais
3.00.00.00-9 Engenharias
topic redes neurais
equações diferenciais
3.00.00.00-9 Engenharias
description The interpolation capabilities of multilayer perceptron networks (MLP) were used to solve a system of ordinary differential equations that models an axial dispersed non-adiabatic fixed bed reactor. The methodologies described in this paper follow the first ones proposed by Lagaris et al. (1998, 2000), but enlarge them to differential models with mix boundary conditions and by the use of the penalty method to convert the original constrained to unconstrained optimization problem in training the MLP networks. The results are in agreement on those in Luize e Biscaia (1991), which were obtained by well-established numerical techniques as finite element and orthogonal collocation methods. The neural interpolation method used in this paper is easier to handle than the classical methods for numerical solution of differential equations, particularly for non-linear differential systems, and defines a global approximation, in analytic form, for problems solution.
publishDate 2008
dc.date.none.fl_str_mv 2008-04-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238
10.4025/actascitechnol.v25i1.2238
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238
identifier_str_mv 10.4025/actascitechnol.v25i1.2238
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2238/1341
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 25 No 1 (2003); 39-44
Acta Scientiarum. Technology; v. 25 n. 1 (2003); 39-44
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315332075094016