A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/4145 |
Resumo: | The statistical inference in binomial population is subject to gross errors of estimate, as the samples are not identically distributed. Due to this problem, this work aims to determine which is the best affinity constant (c1) that provides the best performance in the estimator, belonging to the class of E-estimators. With that purpose, the methodology used in this work was applied considering the Monte Carlo simulation method, in which different configurations described by combination of parametric values, levels of contamination and sample sizes were appraised. It was concluded that for the high probability of contamination (γ = 0.40), c1 = 0.1 is recommended in cases with large samples (n = 50 and n = 80). |
id |
UEM-6_657bdf621c69b35c3b3914f9ab538d27 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/4145 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145Estudo por simulação Monte Carlo de um estimador robusto utilizado na inferência de um modelo binomial contaminado - doi: 10.4025/actascitechnol.v32i3.4145binomial distributioncontaminated binomialMonte Carlorobustnessdistribuição binomialbinomiais contaminadasMonte CarlorobustezEstatísticaThe statistical inference in binomial population is subject to gross errors of estimate, as the samples are not identically distributed. Due to this problem, this work aims to determine which is the best affinity constant (c1) that provides the best performance in the estimator, belonging to the class of E-estimators. With that purpose, the methodology used in this work was applied considering the Monte Carlo simulation method, in which different configurations described by combination of parametric values, levels of contamination and sample sizes were appraised. It was concluded that for the high probability of contamination (γ = 0.40), c1 = 0.1 is recommended in cases with large samples (n = 50 and n = 80).A inferência estatística em populações binomiais contaminadas está sujeita a erros grosseiros de estimação, uma vez que as amostras não são identicamente distribuídas. Por esse problema, este trabalho tem por objetivo determinar qual a melhor constante de afinidade (c1) que proporcione melhor desempenho em um estimador pertencente à classe dos estimadores-E. Com esse propósito, neste trabalho, foi utilizada a metodologia, considerando-se o método de simulação Monte Carlo, no qual diferentes configurações descritas pela combinação de valores paramétricos, níveis de contaminação e tamanhos de amostra foram avaliados. Concluiu-se que, para alta probabilidade de mistura (γ = 0,40), recomenda-se assumir c1 = 0,1 nas situações de grandes amostras (n = 50 e n = 80).Universidade Estadual De Maringá2010-11-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/414510.4025/actascitechnol.v32i3.4145Acta Scientiarum. Technology; Vol 32 No 3 (2010); 303-307Acta Scientiarum. Technology; v. 32 n. 3 (2010); 303-3071806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/4145/4145Silva, Augusto Maciel daCirillo, Marcelo Ângeloinfo:eu-repo/semantics/openAccess2024-05-17T13:03:01Zoai:periodicos.uem.br/ojs:article/4145Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:03:01Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 Estudo por simulação Monte Carlo de um estimador robusto utilizado na inferência de um modelo binomial contaminado - doi: 10.4025/actascitechnol.v32i3.4145 |
title |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 |
spellingShingle |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 Silva, Augusto Maciel da binomial distribution contaminated binomial Monte Carlo robustness distribuição binomial binomiais contaminadas Monte Carlo robustez Estatística |
title_short |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 |
title_full |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 |
title_fullStr |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 |
title_full_unstemmed |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 |
title_sort |
A Monte Carlo simulation study of a robust estimator used in the inference of a contaminated binomial model - doi: 10.4025/actascitechnol.v32i3.4145 |
author |
Silva, Augusto Maciel da |
author_facet |
Silva, Augusto Maciel da Cirillo, Marcelo Ângelo |
author_role |
author |
author2 |
Cirillo, Marcelo Ângelo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Augusto Maciel da Cirillo, Marcelo Ângelo |
dc.subject.por.fl_str_mv |
binomial distribution contaminated binomial Monte Carlo robustness distribuição binomial binomiais contaminadas Monte Carlo robustez Estatística |
topic |
binomial distribution contaminated binomial Monte Carlo robustness distribuição binomial binomiais contaminadas Monte Carlo robustez Estatística |
description |
The statistical inference in binomial population is subject to gross errors of estimate, as the samples are not identically distributed. Due to this problem, this work aims to determine which is the best affinity constant (c1) that provides the best performance in the estimator, belonging to the class of E-estimators. With that purpose, the methodology used in this work was applied considering the Monte Carlo simulation method, in which different configurations described by combination of parametric values, levels of contamination and sample sizes were appraised. It was concluded that for the high probability of contamination (γ = 0.40), c1 = 0.1 is recommended in cases with large samples (n = 50 and n = 80). |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/4145 10.4025/actascitechnol.v32i3.4145 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/4145 |
identifier_str_mv |
10.4025/actascitechnol.v32i3.4145 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/4145/4145 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 32 No 3 (2010); 303-307 Acta Scientiarum. Technology; v. 32 n. 3 (2010); 303-307 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315333175050240 |