Evaluation of Weibull parameters by different methods for farms

Detalhes bibliográficos
Autor(a) principal: Aristone, Flavio
Data de Publicação: 2023
Outros Autores: Souza, Amaury de, Pobocikova, Ivana, Ihaddadene, Razika, Cavazzana, Guilherme Henrique, Reis, Carlos José dos, Ihaddadene, Nabila, Pavão, Hamilton Germano, Fernandes, Widinei Alves, Medeiros, Elias Silva de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/64999
Resumo: One of the most prevalent clean and sustainable forms of energy produced worldwide is the power created from wind runoff. Wind turbines ought to be installed in areas with favorable circumstances to transform mechanical wind energy into electricity. Finding appropriate ways to predict the energy produced by a wind farm using the Weibull distribution is the main goal of this work. Theoretical techniques have been applied to calculate Weibull selected characteristics using experimental data gathered at the campus of Universidade Federal de Mato Grosso do Sul (UFMS) in Brazil. These data were gathered 10 meters above the surface. The effectiveness of four statistical techniques that are frequently used in the energy industry are compared: the standard energy factor method; the least squares regression method; the moment method; and the mean standard deviation method in estimating Weibull parameters. The root mean square error, Chi-square error, Kolmogorov-Smirnov test, and coefficient of determination are used to contrast the statistical methodologies. The results demonstrated that the least squares regression approach performs less well than other methods. The standard energy factor approach, the moment method, and the mean standard deviation method are the most effective techniques when modifying Weibull distribution curves for the assessment of wind speed data. The data analysis confirms that these three strategies are fully applicable if the wind speed distribution closely matches the Weibull distribution.
id UEM-6_6969a7ff858d72da904dc0d90f5bfc44
oai_identifier_str oai:periodicos.uem.br/ojs:article/64999
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Evaluation of Weibull parameters by different methods for farmsEvaluation of Weibull parameters by different methods for farmswind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).wind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).One of the most prevalent clean and sustainable forms of energy produced worldwide is the power created from wind runoff. Wind turbines ought to be installed in areas with favorable circumstances to transform mechanical wind energy into electricity. Finding appropriate ways to predict the energy produced by a wind farm using the Weibull distribution is the main goal of this work. Theoretical techniques have been applied to calculate Weibull selected characteristics using experimental data gathered at the campus of Universidade Federal de Mato Grosso do Sul (UFMS) in Brazil. These data were gathered 10 meters above the surface. The effectiveness of four statistical techniques that are frequently used in the energy industry are compared: the standard energy factor method; the least squares regression method; the moment method; and the mean standard deviation method in estimating Weibull parameters. The root mean square error, Chi-square error, Kolmogorov-Smirnov test, and coefficient of determination are used to contrast the statistical methodologies. The results demonstrated that the least squares regression approach performs less well than other methods. The standard energy factor approach, the moment method, and the mean standard deviation method are the most effective techniques when modifying Weibull distribution curves for the assessment of wind speed data. The data analysis confirms that these three strategies are fully applicable if the wind speed distribution closely matches the Weibull distribution.One of the most prevalent clean and sustainable forms of energy produced worldwide is the power created from wind runoff. Wind turbines ought to be installed in areas with favorable circumstances to transform mechanical wind energy into electricity. Finding appropriate ways to predict the energy produced by a wind farm using the Weibull distribution is the main goal of this work. Theoretical techniques have been applied to calculate Weibull selected characteristics using experimental data gathered at the campus of Universidade Federal de Mato Grosso do Sul (UFMS) in Brazil. These data were gathered 10 meters above the surface. The effectiveness of four statistical techniques that are frequently used in the energy industry are compared: the standard energy factor method; the least squares regression method; the moment method; and the mean standard deviation method in estimating Weibull parameters. The root mean square error, Chi-square error, Kolmogorov-Smirnov test, and coefficient of determination are used to contrast the statistical methodologies. The results demonstrated that the least squares regression approach performs less well than other methods. The standard energy factor approach, the moment method, and the mean standard deviation method are the most effective techniques when modifying Weibull distribution curves for the assessment of wind speed data. The data analysis confirms that these three strategies are fully applicable if the wind speed distribution closely matches the Weibull distribution.Universidade Estadual De Maringá2023-12-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/6499910.4025/actascitechnol.v46i1.64999Acta Scientiarum. Technology; Vol 46 No 1 (2024): Em proceso; e64999Acta Scientiarum. Technology; v. 46 n. 1 (2024): Publicação contínua; e649991806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/64999/751375156966Copyright (c) 2024 Acta Scientiarum. Technologyhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAristone, Flavio Souza, Amaury dePobocikova, Ivana Ihaddadene, Razika Cavazzana, Guilherme Henrique Reis, Carlos José dos Ihaddadene, Nabila Pavão, Hamilton Germano Fernandes, Widinei Alves Medeiros, Elias Silva de 2024-03-01T16:32:07Zoai:periodicos.uem.br/ojs:article/64999Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-03-01T16:32:07Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Evaluation of Weibull parameters by different methods for farms
Evaluation of Weibull parameters by different methods for farms
title Evaluation of Weibull parameters by different methods for farms
spellingShingle Evaluation of Weibull parameters by different methods for farms
Aristone, Flavio
wind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).
wind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).
title_short Evaluation of Weibull parameters by different methods for farms
title_full Evaluation of Weibull parameters by different methods for farms
title_fullStr Evaluation of Weibull parameters by different methods for farms
title_full_unstemmed Evaluation of Weibull parameters by different methods for farms
title_sort Evaluation of Weibull parameters by different methods for farms
author Aristone, Flavio
author_facet Aristone, Flavio
Souza, Amaury de
Pobocikova, Ivana
Ihaddadene, Razika
Cavazzana, Guilherme Henrique
Reis, Carlos José dos
Ihaddadene, Nabila
Pavão, Hamilton Germano
Fernandes, Widinei Alves
Medeiros, Elias Silva de
author_role author
author2 Souza, Amaury de
Pobocikova, Ivana
Ihaddadene, Razika
Cavazzana, Guilherme Henrique
Reis, Carlos José dos
Ihaddadene, Nabila
Pavão, Hamilton Germano
Fernandes, Widinei Alves
Medeiros, Elias Silva de
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Aristone, Flavio
Souza, Amaury de
Pobocikova, Ivana
Ihaddadene, Razika
Cavazzana, Guilherme Henrique
Reis, Carlos José dos
Ihaddadene, Nabila
Pavão, Hamilton Germano
Fernandes, Widinei Alves
Medeiros, Elias Silva de
dc.subject.por.fl_str_mv wind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).
wind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).
topic wind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).
wind energy; Weibull distribution; probability distribution function (PDF); cumulative distribution function (CDF); shape parameter (k); scale parameter (c).
description One of the most prevalent clean and sustainable forms of energy produced worldwide is the power created from wind runoff. Wind turbines ought to be installed in areas with favorable circumstances to transform mechanical wind energy into electricity. Finding appropriate ways to predict the energy produced by a wind farm using the Weibull distribution is the main goal of this work. Theoretical techniques have been applied to calculate Weibull selected characteristics using experimental data gathered at the campus of Universidade Federal de Mato Grosso do Sul (UFMS) in Brazil. These data were gathered 10 meters above the surface. The effectiveness of four statistical techniques that are frequently used in the energy industry are compared: the standard energy factor method; the least squares regression method; the moment method; and the mean standard deviation method in estimating Weibull parameters. The root mean square error, Chi-square error, Kolmogorov-Smirnov test, and coefficient of determination are used to contrast the statistical methodologies. The results demonstrated that the least squares regression approach performs less well than other methods. The standard energy factor approach, the moment method, and the mean standard deviation method are the most effective techniques when modifying Weibull distribution curves for the assessment of wind speed data. The data analysis confirms that these three strategies are fully applicable if the wind speed distribution closely matches the Weibull distribution.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/64999
10.4025/actascitechnol.v46i1.64999
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/64999
identifier_str_mv 10.4025/actascitechnol.v46i1.64999
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/64999/751375156966
dc.rights.driver.fl_str_mv Copyright (c) 2024 Acta Scientiarum. Technology
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2024 Acta Scientiarum. Technology
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 46 No 1 (2024): Em proceso; e64999
Acta Scientiarum. Technology; v. 46 n. 1 (2024): Publicação contínua; e64999
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315338364452864