Procrustes analysis applied to variables selection

Detalhes bibliográficos
Autor(a) principal: Guedes, Terezinha Aparecida
Data de Publicação: 2008
Outros Autores: Ivanqui, Ivan Ludgero
Tipo de documento: Artigo
Idioma: por
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073
Resumo: In exploratory multivariate research aiming at the reduction of the, dimension of the variables set, the most frequently used method is the analysis of the principal components. All original variables are generally necessary to define the subset of variables. Krzanowski (1987) has provided a methodology which combines the principal component analysis and the procrustes analysis to determine how much the new subset of variables reproduces the structure of original variables. Steiner (1995) used several methods to separate groups and select the variables in a medical case study. In the present work, the procrustes analysis was applied to a set of data randomly generated according to the variables distributions defined by Steiner. The objective was to verify if the subset of variables resultant from the analysis reproduces the original structure of data. The: results led to the conclusion that the procrustes method is a necessary tool for variables selection in multivariate analysis.
id UEM-6_6bc652cc5ff40bf4901bcfba401f4f3b
oai_identifier_str oai:periodicos.uem.br/ojs:article/3073
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Procrustes analysis applied to variables selectionAnálise procrustes aplicada à seleção de variáveiscomponentes principaisanálise procrustesanálise multivariada1.02.02.00-5 EstatísticaIn exploratory multivariate research aiming at the reduction of the, dimension of the variables set, the most frequently used method is the analysis of the principal components. All original variables are generally necessary to define the subset of variables. Krzanowski (1987) has provided a methodology which combines the principal component analysis and the procrustes analysis to determine how much the new subset of variables reproduces the structure of original variables. Steiner (1995) used several methods to separate groups and select the variables in a medical case study. In the present work, the procrustes analysis was applied to a set of data randomly generated according to the variables distributions defined by Steiner. The objective was to verify if the subset of variables resultant from the analysis reproduces the original structure of data. The: results led to the conclusion that the procrustes method is a necessary tool for variables selection in multivariate analysis.Nos estudos exploratórios multivariados, cujo objetivo é a redução da dimensão do conjunto de variáveis, o principal método utilizado é a análise de componentes principais. Neste método, todas as variáveis originais são, em geral, necessárias para definir os subconjuntos de variáveis. Krzanowski (1987) apresentou uma metodologia que combina a análise de componentes principais e a análise procrustes para determinar o quanto o novo subconjunto de variáveis representa a estrutura dos dados originais. Steiner (1995) utilizou vários métodos para separar grupos e selecionar variáveis em um problema médico. Neste trabalho, foi aplicada a análise procrustes para um conjunto de dados gerado aleatoriamente segundo as distribuições das variáveis definidas por Steiner. O objetivo foi verificar se o subconjunto de variáveis resultantes da análise reproduzem a estrutura original dos dados. Através das análises realizadas, concluiu-se que o método procrustes é uma ferramenta indispensável na seleção de variáveis.Universidade Estadual De Maringá2008-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/307310.4025/actascitechnol.v20i0.3073Acta Scientiarum. Technology; Vol 20 (1998); 505-509Acta Scientiarum. Technology; v. 20 (1998); 505-5091806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073/2328Guedes, Terezinha AparecidaIvanqui, Ivan Ludgeroinfo:eu-repo/semantics/openAccess2024-05-17T13:02:53Zoai:periodicos.uem.br/ojs:article/3073Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:02:53Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Procrustes analysis applied to variables selection
Análise procrustes aplicada à seleção de variáveis
title Procrustes analysis applied to variables selection
spellingShingle Procrustes analysis applied to variables selection
Guedes, Terezinha Aparecida
componentes principais
análise procrustes
análise multivariada
1.02.02.00-5 Estatística
title_short Procrustes analysis applied to variables selection
title_full Procrustes analysis applied to variables selection
title_fullStr Procrustes analysis applied to variables selection
title_full_unstemmed Procrustes analysis applied to variables selection
title_sort Procrustes analysis applied to variables selection
author Guedes, Terezinha Aparecida
author_facet Guedes, Terezinha Aparecida
Ivanqui, Ivan Ludgero
author_role author
author2 Ivanqui, Ivan Ludgero
author2_role author
dc.contributor.author.fl_str_mv Guedes, Terezinha Aparecida
Ivanqui, Ivan Ludgero
dc.subject.por.fl_str_mv componentes principais
análise procrustes
análise multivariada
1.02.02.00-5 Estatística
topic componentes principais
análise procrustes
análise multivariada
1.02.02.00-5 Estatística
description In exploratory multivariate research aiming at the reduction of the, dimension of the variables set, the most frequently used method is the analysis of the principal components. All original variables are generally necessary to define the subset of variables. Krzanowski (1987) has provided a methodology which combines the principal component analysis and the procrustes analysis to determine how much the new subset of variables reproduces the structure of original variables. Steiner (1995) used several methods to separate groups and select the variables in a medical case study. In the present work, the procrustes analysis was applied to a set of data randomly generated according to the variables distributions defined by Steiner. The objective was to verify if the subset of variables resultant from the analysis reproduces the original structure of data. The: results led to the conclusion that the procrustes method is a necessary tool for variables selection in multivariate analysis.
publishDate 2008
dc.date.none.fl_str_mv 2008-05-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073
10.4025/actascitechnol.v20i0.3073
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073
identifier_str_mv 10.4025/actascitechnol.v20i0.3073
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073/2328
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 20 (1998); 505-509
Acta Scientiarum. Technology; v. 20 (1998); 505-509
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315332592041984