Procrustes analysis applied to variables selection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073 |
Resumo: | In exploratory multivariate research aiming at the reduction of the, dimension of the variables set, the most frequently used method is the analysis of the principal components. All original variables are generally necessary to define the subset of variables. Krzanowski (1987) has provided a methodology which combines the principal component analysis and the procrustes analysis to determine how much the new subset of variables reproduces the structure of original variables. Steiner (1995) used several methods to separate groups and select the variables in a medical case study. In the present work, the procrustes analysis was applied to a set of data randomly generated according to the variables distributions defined by Steiner. The objective was to verify if the subset of variables resultant from the analysis reproduces the original structure of data. The: results led to the conclusion that the procrustes method is a necessary tool for variables selection in multivariate analysis. |
id |
UEM-6_6bc652cc5ff40bf4901bcfba401f4f3b |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/3073 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Procrustes analysis applied to variables selectionAnálise procrustes aplicada à seleção de variáveiscomponentes principaisanálise procrustesanálise multivariada1.02.02.00-5 EstatísticaIn exploratory multivariate research aiming at the reduction of the, dimension of the variables set, the most frequently used method is the analysis of the principal components. All original variables are generally necessary to define the subset of variables. Krzanowski (1987) has provided a methodology which combines the principal component analysis and the procrustes analysis to determine how much the new subset of variables reproduces the structure of original variables. Steiner (1995) used several methods to separate groups and select the variables in a medical case study. In the present work, the procrustes analysis was applied to a set of data randomly generated according to the variables distributions defined by Steiner. The objective was to verify if the subset of variables resultant from the analysis reproduces the original structure of data. The: results led to the conclusion that the procrustes method is a necessary tool for variables selection in multivariate analysis.Nos estudos exploratórios multivariados, cujo objetivo é a redução da dimensão do conjunto de variáveis, o principal método utilizado é a análise de componentes principais. Neste método, todas as variáveis originais são, em geral, necessárias para definir os subconjuntos de variáveis. Krzanowski (1987) apresentou uma metodologia que combina a análise de componentes principais e a análise procrustes para determinar o quanto o novo subconjunto de variáveis representa a estrutura dos dados originais. Steiner (1995) utilizou vários métodos para separar grupos e selecionar variáveis em um problema médico. Neste trabalho, foi aplicada a análise procrustes para um conjunto de dados gerado aleatoriamente segundo as distribuições das variáveis definidas por Steiner. O objetivo foi verificar se o subconjunto de variáveis resultantes da análise reproduzem a estrutura original dos dados. Através das análises realizadas, concluiu-se que o método procrustes é uma ferramenta indispensável na seleção de variáveis.Universidade Estadual De Maringá2008-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/307310.4025/actascitechnol.v20i0.3073Acta Scientiarum. Technology; Vol 20 (1998); 505-509Acta Scientiarum. Technology; v. 20 (1998); 505-5091806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073/2328Guedes, Terezinha AparecidaIvanqui, Ivan Ludgeroinfo:eu-repo/semantics/openAccess2024-05-17T13:02:53Zoai:periodicos.uem.br/ojs:article/3073Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:02:53Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Procrustes analysis applied to variables selection Análise procrustes aplicada à seleção de variáveis |
title |
Procrustes analysis applied to variables selection |
spellingShingle |
Procrustes analysis applied to variables selection Guedes, Terezinha Aparecida componentes principais análise procrustes análise multivariada 1.02.02.00-5 Estatística |
title_short |
Procrustes analysis applied to variables selection |
title_full |
Procrustes analysis applied to variables selection |
title_fullStr |
Procrustes analysis applied to variables selection |
title_full_unstemmed |
Procrustes analysis applied to variables selection |
title_sort |
Procrustes analysis applied to variables selection |
author |
Guedes, Terezinha Aparecida |
author_facet |
Guedes, Terezinha Aparecida Ivanqui, Ivan Ludgero |
author_role |
author |
author2 |
Ivanqui, Ivan Ludgero |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Guedes, Terezinha Aparecida Ivanqui, Ivan Ludgero |
dc.subject.por.fl_str_mv |
componentes principais análise procrustes análise multivariada 1.02.02.00-5 Estatística |
topic |
componentes principais análise procrustes análise multivariada 1.02.02.00-5 Estatística |
description |
In exploratory multivariate research aiming at the reduction of the, dimension of the variables set, the most frequently used method is the analysis of the principal components. All original variables are generally necessary to define the subset of variables. Krzanowski (1987) has provided a methodology which combines the principal component analysis and the procrustes analysis to determine how much the new subset of variables reproduces the structure of original variables. Steiner (1995) used several methods to separate groups and select the variables in a medical case study. In the present work, the procrustes analysis was applied to a set of data randomly generated according to the variables distributions defined by Steiner. The objective was to verify if the subset of variables resultant from the analysis reproduces the original structure of data. The: results led to the conclusion that the procrustes method is a necessary tool for variables selection in multivariate analysis. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-05-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073 10.4025/actascitechnol.v20i0.3073 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073 |
identifier_str_mv |
10.4025/actascitechnol.v20i0.3073 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3073/2328 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 20 (1998); 505-509 Acta Scientiarum. Technology; v. 20 (1998); 505-509 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315332592041984 |