A new class of gamma distribution

Detalhes bibliográficos
Autor(a) principal: Brito, Cícero Carlos Ramos de
Data de Publicação: 2017
Outros Autores: Gomes-Silva, Frank, Rêgo, Leandro Chaves, Oliveira, Wilson Rosa de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29890
Resumo:  This paper presents a new class of probability distributions generated from the gamma distribution. For the new class proposed, we present several statistical properties, such as the risk function, expansions to density and cumulative function, moment generating function, characteristic function, the moments of order , central moments of order , the log likelihood and its partial derivatives and also Rényi entropy, kurtosis, skewness and variance. Some of these properties are indicated for a particular distribution within this new class that is used to illustrate the capability of the proposed new class through an application to a real data set. The data set presented in Choulakian and Stephens (2001) was used. Six models are compared and for the selection of these models was used the Akaike Information Criterion (AIC) and tests of Cramer-Von Mises and Anderson-Darling to assess the models fit. Lastly, the conclusions from the analysis and comparison of the results obtained are presented, as well as the directions for future researches. 
id UEM-6_d1a56421a66567b683b3ca4c35022f9d
oai_identifier_str oai:periodicos.uem.br/ojs:article/29890
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling A new class of gamma distributiongeneralized distributionstatistical propertiesquantile functionmaximum likelihood estimationmodel fit.Teoria das distribuições This paper presents a new class of probability distributions generated from the gamma distribution. For the new class proposed, we present several statistical properties, such as the risk function, expansions to density and cumulative function, moment generating function, characteristic function, the moments of order , central moments of order , the log likelihood and its partial derivatives and also Rényi entropy, kurtosis, skewness and variance. Some of these properties are indicated for a particular distribution within this new class that is used to illustrate the capability of the proposed new class through an application to a real data set. The data set presented in Choulakian and Stephens (2001) was used. Six models are compared and for the selection of these models was used the Akaike Information Criterion (AIC) and tests of Cramer-Von Mises and Anderson-Darling to assess the models fit. Lastly, the conclusions from the analysis and comparison of the results obtained are presented, as well as the directions for future researches. Universidade Estadual De Maringá2017-02-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2989010.4025/actascitechnol.v39i1.29890Acta Scientiarum. Technology; Vol 39 No 1 (2017); 79-87Acta Scientiarum. Technology; v. 39 n. 1 (2017); 79-871806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29890/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29890/751375144355Brito, Cícero Carlos Ramos deGomes-Silva, FrankRêgo, Leandro ChavesOliveira, Wilson Rosa deinfo:eu-repo/semantics/openAccess2017-02-24T10:36:53Zoai:periodicos.uem.br/ojs:article/29890Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2017-02-24T10:36:53Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv A new class of gamma distribution
title A new class of gamma distribution
spellingShingle A new class of gamma distribution
Brito, Cícero Carlos Ramos de
generalized distribution
statistical properties
quantile function
maximum likelihood estimation
model fit.
Teoria das distribuições
title_short A new class of gamma distribution
title_full A new class of gamma distribution
title_fullStr A new class of gamma distribution
title_full_unstemmed A new class of gamma distribution
title_sort A new class of gamma distribution
author Brito, Cícero Carlos Ramos de
author_facet Brito, Cícero Carlos Ramos de
Gomes-Silva, Frank
Rêgo, Leandro Chaves
Oliveira, Wilson Rosa de
author_role author
author2 Gomes-Silva, Frank
Rêgo, Leandro Chaves
Oliveira, Wilson Rosa de
author2_role author
author
author
dc.contributor.author.fl_str_mv Brito, Cícero Carlos Ramos de
Gomes-Silva, Frank
Rêgo, Leandro Chaves
Oliveira, Wilson Rosa de
dc.subject.por.fl_str_mv generalized distribution
statistical properties
quantile function
maximum likelihood estimation
model fit.
Teoria das distribuições
topic generalized distribution
statistical properties
quantile function
maximum likelihood estimation
model fit.
Teoria das distribuições
description  This paper presents a new class of probability distributions generated from the gamma distribution. For the new class proposed, we present several statistical properties, such as the risk function, expansions to density and cumulative function, moment generating function, characteristic function, the moments of order , central moments of order , the log likelihood and its partial derivatives and also Rényi entropy, kurtosis, skewness and variance. Some of these properties are indicated for a particular distribution within this new class that is used to illustrate the capability of the proposed new class through an application to a real data set. The data set presented in Choulakian and Stephens (2001) was used. Six models are compared and for the selection of these models was used the Akaike Information Criterion (AIC) and tests of Cramer-Von Mises and Anderson-Darling to assess the models fit. Lastly, the conclusions from the analysis and comparison of the results obtained are presented, as well as the directions for future researches. 
publishDate 2017
dc.date.none.fl_str_mv 2017-02-24
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29890
10.4025/actascitechnol.v39i1.29890
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29890
identifier_str_mv 10.4025/actascitechnol.v39i1.29890
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29890/pdf
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29890/751375144355
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 39 No 1 (2017); 79-87
Acta Scientiarum. Technology; v. 39 n. 1 (2017); 79-87
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315336314486784