Semiodiscursive analysis of TV newscasts based on data mining and image processing

Detalhes bibliográficos
Autor(a) principal: Conceição, Felipe Leandro Andrade da
Data de Publicação: 2017
Outros Autores: Pádua, Flávio Luis Cardeal, Pereira, Adriano César Machado, Assis, Guilherme Tavares de, Silva, Giani David, Andrade, Antônio Augusto Braighi
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29763
Resumo: This work addresses the development of a novel computer-aided methodology for discourse analysis of TV newscasts. A TV newscast constitutes a particular type of discourse and has become a central part of the modern-day lives of millions of people. It is important to understand how this media content works and how it affects human life. To support the study of TV newscasts under the discourse analysis perspective, this work proposes a newscast structure to recover its main units and extract relevant data, named here as newscast discursive metadata (NDM). The NDM describes aspects, such as screen time and field size of newscasts’ participants and themes addressed. Data mining and image analysis methods are used to extract and analyze the NDM of a dataset containing 41 editions of two Brazilian newscasts. The experimental results are promising, demonstrating the effectiveness of the proposed methodology. 
id UEM-6_d2a581fe03ba01c2acc4c2fa8dc5f025
oai_identifier_str oai:periodicos.uem.br/ojs:article/29763
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Semiodiscursive analysis of TV newscasts based on data mining and image processingJournalismComputingDiscursive MetadataDiscourse AnalysisInterdisciplinarThis work addresses the development of a novel computer-aided methodology for discourse analysis of TV newscasts. A TV newscast constitutes a particular type of discourse and has become a central part of the modern-day lives of millions of people. It is important to understand how this media content works and how it affects human life. To support the study of TV newscasts under the discourse analysis perspective, this work proposes a newscast structure to recover its main units and extract relevant data, named here as newscast discursive metadata (NDM). The NDM describes aspects, such as screen time and field size of newscasts’ participants and themes addressed. Data mining and image analysis methods are used to extract and analyze the NDM of a dataset containing 41 editions of two Brazilian newscasts. The experimental results are promising, demonstrating the effectiveness of the proposed methodology. Universidade Estadual De Maringá2017-07-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2976310.4025/actascitechnol.v39i3.29763Acta Scientiarum. Technology; Vol 39 No 3 (2017); 357-365Acta Scientiarum. Technology; v. 39 n. 3 (2017); 357-3651806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29763/pdfCopyright (c) 2017 Acta Scientiarum. Technologyinfo:eu-repo/semantics/openAccessConceição, Felipe Leandro Andrade daPádua, Flávio Luis CardealPereira, Adriano César MachadoAssis, Guilherme Tavares deSilva, Giani DavidAndrade, Antônio Augusto Braighi2017-07-14T10:09:05Zoai:periodicos.uem.br/ojs:article/29763Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2017-07-14T10:09:05Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Semiodiscursive analysis of TV newscasts based on data mining and image processing
title Semiodiscursive analysis of TV newscasts based on data mining and image processing
spellingShingle Semiodiscursive analysis of TV newscasts based on data mining and image processing
Conceição, Felipe Leandro Andrade da
Journalism
Computing
Discursive Metadata
Discourse Analysis
Interdisciplinar
title_short Semiodiscursive analysis of TV newscasts based on data mining and image processing
title_full Semiodiscursive analysis of TV newscasts based on data mining and image processing
title_fullStr Semiodiscursive analysis of TV newscasts based on data mining and image processing
title_full_unstemmed Semiodiscursive analysis of TV newscasts based on data mining and image processing
title_sort Semiodiscursive analysis of TV newscasts based on data mining and image processing
author Conceição, Felipe Leandro Andrade da
author_facet Conceição, Felipe Leandro Andrade da
Pádua, Flávio Luis Cardeal
Pereira, Adriano César Machado
Assis, Guilherme Tavares de
Silva, Giani David
Andrade, Antônio Augusto Braighi
author_role author
author2 Pádua, Flávio Luis Cardeal
Pereira, Adriano César Machado
Assis, Guilherme Tavares de
Silva, Giani David
Andrade, Antônio Augusto Braighi
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Conceição, Felipe Leandro Andrade da
Pádua, Flávio Luis Cardeal
Pereira, Adriano César Machado
Assis, Guilherme Tavares de
Silva, Giani David
Andrade, Antônio Augusto Braighi
dc.subject.por.fl_str_mv Journalism
Computing
Discursive Metadata
Discourse Analysis
Interdisciplinar
topic Journalism
Computing
Discursive Metadata
Discourse Analysis
Interdisciplinar
description This work addresses the development of a novel computer-aided methodology for discourse analysis of TV newscasts. A TV newscast constitutes a particular type of discourse and has become a central part of the modern-day lives of millions of people. It is important to understand how this media content works and how it affects human life. To support the study of TV newscasts under the discourse analysis perspective, this work proposes a newscast structure to recover its main units and extract relevant data, named here as newscast discursive metadata (NDM). The NDM describes aspects, such as screen time and field size of newscasts’ participants and themes addressed. Data mining and image analysis methods are used to extract and analyze the NDM of a dataset containing 41 editions of two Brazilian newscasts. The experimental results are promising, demonstrating the effectiveness of the proposed methodology. 
publishDate 2017
dc.date.none.fl_str_mv 2017-07-06
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29763
10.4025/actascitechnol.v39i3.29763
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29763
identifier_str_mv 10.4025/actascitechnol.v39i3.29763
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29763/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2017 Acta Scientiarum. Technology
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Acta Scientiarum. Technology
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 39 No 3 (2017); 357-365
Acta Scientiarum. Technology; v. 39 n. 3 (2017); 357-365
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315336300855296