MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UEPG |
Texto Completo: | http://tede2.uepg.br/jspui/handle/prefix/2747 |
Resumo: | As pragas em lavouras causam prejuízos econômicos na agricultura, reduzindo a produção e consequentemente os lucros. O manejo de pragas é essencial, para reduzir estes prejuízos, e consiste na identificação e posterior controle desse tipo de ameaça. O controle é fundamentalmente dependente da identificação, pois é a partir dela que o manejo é feito. A identificação é feita visualmente, baseando-se nas características da praga. Essas características são inerentes e diferem de espécie para espécie. Devido à dificuldade da identificação, esse processo é realizado principalmente por profissionais especializados na área, o que acarreta na concentração do conhecimento. Esta dissertação apresenta uma metodologia para classificação de pragas por meio de técnicas de computação, onde um sistema computacional do tipo clienteservidor foi criado a fim de prover a classificação de pragas por meio de serviço, que é realizado pelo uso de rede neural convolucional baseada na arquitetura Inception V3. As pragas Anticarsia Gemmatalis, Helicoverpa armigera e Spodoptera Cosmioides, foram escolhidas para classificação por serem bastante comuns no estado do Paraná. A rede neural convolucional obteve índice de acerto de 92,5%. |
id |
UEPG_18c7f1e8048a84f54c86a8980975b8c9 |
---|---|
oai_identifier_str |
oai:tede2.uepg.br:prefix/2747 |
network_acronym_str |
UEPG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UEPG |
repository_id_str |
|
spelling |
Vaz, Maria Salete Marcon Gomeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791983U7Britto Junior, Alceu de SouzaJoris, Hélio Antônio Woodhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4491447J0Rosa, Renan de Paula2019-02-28T17:58:29Z2019-02-272019-02-28T17:58:29Z2018-11-19ROSA, Renan de Paula. Método de classificação de pragas por meio de rede neural convolucional profunda. 2018. Dissertação (Mestrado Computação Aplicada) - Universidade Estadual de Ponta Grossa, Ponta Grossa, 2018.http://tede2.uepg.br/jspui/handle/prefix/2747As pragas em lavouras causam prejuízos econômicos na agricultura, reduzindo a produção e consequentemente os lucros. O manejo de pragas é essencial, para reduzir estes prejuízos, e consiste na identificação e posterior controle desse tipo de ameaça. O controle é fundamentalmente dependente da identificação, pois é a partir dela que o manejo é feito. A identificação é feita visualmente, baseando-se nas características da praga. Essas características são inerentes e diferem de espécie para espécie. Devido à dificuldade da identificação, esse processo é realizado principalmente por profissionais especializados na área, o que acarreta na concentração do conhecimento. Esta dissertação apresenta uma metodologia para classificação de pragas por meio de técnicas de computação, onde um sistema computacional do tipo clienteservidor foi criado a fim de prover a classificação de pragas por meio de serviço, que é realizado pelo uso de rede neural convolucional baseada na arquitetura Inception V3. As pragas Anticarsia Gemmatalis, Helicoverpa armigera e Spodoptera Cosmioides, foram escolhidas para classificação por serem bastante comuns no estado do Paraná. A rede neural convolucional obteve índice de acerto de 92,5%.Pests on crops cause economic damage to agriculture, reducing production and consequently profits. Pest management is essential to reduce these losses, and consists in the identification and subsequent control of this type of threat. Control is fundamentally dependent on identification, because management is done from it. The identification is made visually, based on the characteristics of the pest. These characteristics are inherent and differ from species to species. Due to the difficulty of identification, this process is carried out mainly by professionals specialized in the area, which entails the concentration of knowledge. This dissertation presents a methodology for pest classification by means of computational techniques, in which a client-server computational system was created in order to provide pest classification by means of a service, which is performed by the use of convolutional neural network based in the Inception V3 architecture. The pests Anticarsia Gemmatalis, Helicoverpa armigera and Spodoptera Cosmioides, were chosen for classification because they are quite common in the state of Paraná. The convolutional neural network obtained a success rate of 92.5%.Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2019-02-28T17:58:29Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Renan Rosa.pdf: 4067327 bytes, checksum: eb0bd9e84fbd89a24b4a397c9655fa62 (MD5)Made available in DSpace on 2019-02-28T17:58:29Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Renan Rosa.pdf: 4067327 bytes, checksum: eb0bd9e84fbd89a24b4a397c9655fa62 (MD5) Previous issue date: 2018-11-19porUniversidade Estadual de Ponta GrossaPrograma de Pós Graduação Computação AplicadaUEPGBrasilDepartamento de InformáticaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMachine learningDeep learningRede neural convolucionalClassificação de imagensMachine learningDeep learningConvolutional neural networkImages classificationMÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDAinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações da UEPGinstname:Universidade Estadual de Ponta Grossa (UEPG)instacron:UEPGLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://tede2.uepg.br/jspui/bitstream/prefix/2747/3/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://tede2.uepg.br/jspui/bitstream/prefix/2747/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALRenan Rosa.pdfRenan Rosa.pdfdissertação completa em pdfapplication/pdf4067327http://tede2.uepg.br/jspui/bitstream/prefix/2747/1/Renan%20Rosa.pdfeb0bd9e84fbd89a24b4a397c9655fa62MD51prefix/27472019-02-28 14:58:29.544oai:tede2.uepg.br:prefix/2747TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e Dissertaçõeshttps://tede2.uepg.br/jspui/PUBhttp://tede2.uepg.br/oai/requestbicen@uepg.br||mv_fidelis@yahoo.com.bropendoar:2019-02-28T17:58:29Biblioteca Digital de Teses e Dissertações da UEPG - Universidade Estadual de Ponta Grossa (UEPG)false |
dc.title.pt_BR.fl_str_mv |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA |
title |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA |
spellingShingle |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA Rosa, Renan de Paula CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Machine learning Deep learning Rede neural convolucional Classificação de imagens Machine learning Deep learning Convolutional neural network Images classification |
title_short |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA |
title_full |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA |
title_fullStr |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA |
title_full_unstemmed |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA |
title_sort |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDA |
author |
Rosa, Renan de Paula |
author_facet |
Rosa, Renan de Paula |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Vaz, Maria Salete Marcon Gomes |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791983U7 |
dc.contributor.referee1.fl_str_mv |
Britto Junior, Alceu de Souza |
dc.contributor.referee2.fl_str_mv |
Joris, Hélio Antônio Wood |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4491447J0 |
dc.contributor.author.fl_str_mv |
Rosa, Renan de Paula |
contributor_str_mv |
Vaz, Maria Salete Marcon Gomes Britto Junior, Alceu de Souza Joris, Hélio Antônio Wood |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Machine learning Deep learning Rede neural convolucional Classificação de imagens Machine learning Deep learning Convolutional neural network Images classification |
dc.subject.por.fl_str_mv |
Machine learning Deep learning Rede neural convolucional Classificação de imagens Machine learning Deep learning Convolutional neural network Images classification |
description |
As pragas em lavouras causam prejuízos econômicos na agricultura, reduzindo a produção e consequentemente os lucros. O manejo de pragas é essencial, para reduzir estes prejuízos, e consiste na identificação e posterior controle desse tipo de ameaça. O controle é fundamentalmente dependente da identificação, pois é a partir dela que o manejo é feito. A identificação é feita visualmente, baseando-se nas características da praga. Essas características são inerentes e diferem de espécie para espécie. Devido à dificuldade da identificação, esse processo é realizado principalmente por profissionais especializados na área, o que acarreta na concentração do conhecimento. Esta dissertação apresenta uma metodologia para classificação de pragas por meio de técnicas de computação, onde um sistema computacional do tipo clienteservidor foi criado a fim de prover a classificação de pragas por meio de serviço, que é realizado pelo uso de rede neural convolucional baseada na arquitetura Inception V3. As pragas Anticarsia Gemmatalis, Helicoverpa armigera e Spodoptera Cosmioides, foram escolhidas para classificação por serem bastante comuns no estado do Paraná. A rede neural convolucional obteve índice de acerto de 92,5%. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-11-19 |
dc.date.accessioned.fl_str_mv |
2019-02-28T17:58:29Z |
dc.date.available.fl_str_mv |
2019-02-27 2019-02-28T17:58:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ROSA, Renan de Paula. Método de classificação de pragas por meio de rede neural convolucional profunda. 2018. Dissertação (Mestrado Computação Aplicada) - Universidade Estadual de Ponta Grossa, Ponta Grossa, 2018. |
dc.identifier.uri.fl_str_mv |
http://tede2.uepg.br/jspui/handle/prefix/2747 |
identifier_str_mv |
ROSA, Renan de Paula. Método de classificação de pragas por meio de rede neural convolucional profunda. 2018. Dissertação (Mestrado Computação Aplicada) - Universidade Estadual de Ponta Grossa, Ponta Grossa, 2018. |
url |
http://tede2.uepg.br/jspui/handle/prefix/2747 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Ponta Grossa |
dc.publisher.program.fl_str_mv |
Programa de Pós Graduação Computação Aplicada |
dc.publisher.initials.fl_str_mv |
UEPG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Informática |
publisher.none.fl_str_mv |
Universidade Estadual de Ponta Grossa |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UEPG instname:Universidade Estadual de Ponta Grossa (UEPG) instacron:UEPG |
instname_str |
Universidade Estadual de Ponta Grossa (UEPG) |
instacron_str |
UEPG |
institution |
UEPG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UEPG |
collection |
Biblioteca Digital de Teses e Dissertações da UEPG |
bitstream.url.fl_str_mv |
http://tede2.uepg.br/jspui/bitstream/prefix/2747/3/license.txt http://tede2.uepg.br/jspui/bitstream/prefix/2747/2/license_rdf http://tede2.uepg.br/jspui/bitstream/prefix/2747/1/Renan%20Rosa.pdf |
bitstream.checksum.fl_str_mv |
43cd690d6a359e86c1fe3d5b7cba0c9b e39d27027a6cc9cb039ad269a5db8e34 eb0bd9e84fbd89a24b4a397c9655fa62 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UEPG - Universidade Estadual de Ponta Grossa (UEPG) |
repository.mail.fl_str_mv |
bicen@uepg.br||mv_fidelis@yahoo.com.br |
_version_ |
1809460463056977920 |