Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UEPG |
Texto Completo: | http://tede2.uepg.br/jspui/handle/prefix/3691 |
Resumo: | As plantas possuem um papel fundamental para a existência de vida no planeta Terra, pois elas convertem gás carbônico (CO2) em oxigênio (O2) e servem de alimento para grande parte dos seres vivos, além de serem utilizadas por diversos segmentos industriais. A importância de trabalhos na linha de pesquisa de identificação/classificação de espécies de plantas, deve-se à vasta biodiversidade, em que muitas destas sofrem risco de extinção ou até mesmo não foram catalogadas/descobertas cientificamente. Ainda, existe a dificuldade de realizar as tarefas de classificação de forma manual (humana). Estudos apontam que a forma automatizada de classificação tem sido eficiente, seus processos demandam menor tempo e quantidade de trabalho ao pesquisador, obtendo assim bons resultados na classificação e rotulação de espécies botânicas. Neste trabalho foi utilizada uma rede neural artificial conhecida como auto-encoder, em específico o auto-encoder convolucional, que emprega o método de aprendizagem não supervisionada/autodidata, utilizando as bases não rotuladas, pois estas são mais fáceis de serem encontradas digitalmente, para realizar o treinamento dos modelos computacionais com imagens de um domínio diferente e pertencentes ao mesmo domínio. Posteriormente os modelos treinados foram utilizados para gerar representações de características diferentes das bases Flavia, Leafsnap e PlantCLEF2015, estas sendo utilizadas para treinar classificadores do tipo SVM, individualmente alcançando taxas de acerto de até 95,00 %. Métodos de combinação de classificadores também foram utilizados, mostrando-se capazes de atingir resultados competitivos com os apresentados no estado da arte. |
id |
UEPG_9cf4404a04263183d1f65ca3b9eb2df8 |
---|---|
oai_identifier_str |
oai:tede2.uepg.br:prefix/3691 |
network_acronym_str |
UEPG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UEPG |
repository_id_str |
|
spelling |
Britto Júnior, Alceu de Souza57649375900http://lattes.cnpq.br/4251936710939364Campos Junior, Arion de01435778910http://lattes.cnpq.br/0829505317241223Maldonado e Costa, Yandre02024579906http://lattes.cnpq.br/5111623148244343UEPGUEM06155625905http://lattes.cnpq.br/3995638435449363Presner, Diego Henrique2022-08-17T14:09:00Z2022-08-172022-08-17T14:09:00Z2022-02-09PRESNER, Diego Henrique. Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada. 2022. Dissertação (Mestrado em Computação Aplicada) - Universidade de Estadual de Ponta Grossa, Ponta Grossa, 2022.http://tede2.uepg.br/jspui/handle/prefix/3691As plantas possuem um papel fundamental para a existência de vida no planeta Terra, pois elas convertem gás carbônico (CO2) em oxigênio (O2) e servem de alimento para grande parte dos seres vivos, além de serem utilizadas por diversos segmentos industriais. A importância de trabalhos na linha de pesquisa de identificação/classificação de espécies de plantas, deve-se à vasta biodiversidade, em que muitas destas sofrem risco de extinção ou até mesmo não foram catalogadas/descobertas cientificamente. Ainda, existe a dificuldade de realizar as tarefas de classificação de forma manual (humana). Estudos apontam que a forma automatizada de classificação tem sido eficiente, seus processos demandam menor tempo e quantidade de trabalho ao pesquisador, obtendo assim bons resultados na classificação e rotulação de espécies botânicas. Neste trabalho foi utilizada uma rede neural artificial conhecida como auto-encoder, em específico o auto-encoder convolucional, que emprega o método de aprendizagem não supervisionada/autodidata, utilizando as bases não rotuladas, pois estas são mais fáceis de serem encontradas digitalmente, para realizar o treinamento dos modelos computacionais com imagens de um domínio diferente e pertencentes ao mesmo domínio. Posteriormente os modelos treinados foram utilizados para gerar representações de características diferentes das bases Flavia, Leafsnap e PlantCLEF2015, estas sendo utilizadas para treinar classificadores do tipo SVM, individualmente alcançando taxas de acerto de até 95,00 %. Métodos de combinação de classificadores também foram utilizados, mostrando-se capazes de atingir resultados competitivos com os apresentados no estado da arte.Plants play a fundamental role in the existence of life on planet Earth, as they convert carbon dioxide (CO2) into oxygen (O2) and serve as food for most living beings, in addition to being used by various industrial segments. The importance of works in the research line of identification/classification of plant species is due to the vast biodiversity, in which many of these are at risk of extinction or even have not been scientifically cataloged/discovered. Still, there is the difficulty of performing the classification tasks manually. Studies show that the automated form of classification has been efficient, its processes demand less time and amount of work for the researcher, thus obtaining good results in the classification and labeling of botanical species. In this paper, an artificial neural network known as auto-encoder was used, specifically the convolutional auto-encoder, which employs the unsupervised/selftaught learning method, using unlabeled databases, as these are easier to be found digitally, to perform the training of computational models with images from a different domain and belonging to the same domain. Afterwards, the trained models were used to generate representations of different characteristics of the Flavia, Leafsnap and PlantCLEF2015 bases, which were used to train classifiers of the SVM type, individually reaching hit rates of up to 95,00%. Combination methods of classifiers were also used, showing themselves capable of achieving results that are competitive with those presented in the state of the art.Submitted by Ivani Silva (ivsilva@uepg.br) on 2022-08-17T14:09:00Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Diego Henrique Presner.pdf: 2691044 bytes, checksum: 825615b5776095afb0c738200914c090 (MD5)Made available in DSpace on 2022-08-17T14:09:00Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Diego Henrique Presner.pdf: 2691044 bytes, checksum: 825615b5776095afb0c738200914c090 (MD5) Previous issue date: 2022-02-09porUniversidade Estadual de Ponta GrossaPrograma de Pós Graduação Computação AplicadaUEPGBrasilDepartamento de InformáticaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOIdentificação de plantasAuto-enconderAuto-encoder convolucional,Representações de característicasCombinação de classificadoresPlant identificationAuto-encoderConvolutional auto-encoderFeature representationsCombination of classifiersIdentificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionadainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações da UEPGinstname:Universidade Estadual de Ponta Grossa (UEPG)instacron:UEPGLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://tede2.uepg.br/jspui/bitstream/prefix/3691/3/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://tede2.uepg.br/jspui/bitstream/prefix/3691/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDiego Henrique Presner.pdfDiego Henrique Presner.pdfdissertação completa em pdfapplication/pdf2691044http://tede2.uepg.br/jspui/bitstream/prefix/3691/1/Diego%20Henrique%20Presner.pdf825615b5776095afb0c738200914c090MD51prefix/36912022-08-17 11:09:00.363oai:tede2.uepg.br:prefix/3691TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e Dissertaçõeshttps://tede2.uepg.br/jspui/PUBhttp://tede2.uepg.br/oai/requestbicen@uepg.br||mv_fidelis@yahoo.com.bropendoar:2022-08-17T14:09Biblioteca Digital de Teses e Dissertações da UEPG - Universidade Estadual de Ponta Grossa (UEPG)false |
dc.title.pt_BR.fl_str_mv |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada |
title |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada |
spellingShingle |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada Presner, Diego Henrique CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Identificação de plantas Auto-enconder Auto-encoder convolucional, Representações de características Combinação de classificadores Plant identification Auto-encoder Convolutional auto-encoder Feature representations Combination of classifiers |
title_short |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada |
title_full |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada |
title_fullStr |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada |
title_full_unstemmed |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada |
title_sort |
Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada |
author |
Presner, Diego Henrique |
author_facet |
Presner, Diego Henrique |
author_role |
author |
dc.contributor.instituicao-banca1.pt_BR.fl_str_mv |
UEPG |
dc.contributor.instituicao-banca2.pt_BR.fl_str_mv |
UEM |
dc.contributor.advisor1.fl_str_mv |
Britto Júnior, Alceu de Souza |
dc.contributor.advisor1ID.fl_str_mv |
57649375900 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4251936710939364 |
dc.contributor.referee1.fl_str_mv |
Campos Junior, Arion de |
dc.contributor.referee1ID.fl_str_mv |
01435778910 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0829505317241223 |
dc.contributor.referee2.fl_str_mv |
Maldonado e Costa, Yandre |
dc.contributor.referee2ID.fl_str_mv |
02024579906 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/5111623148244343 |
dc.contributor.authorID.fl_str_mv |
06155625905 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3995638435449363 |
dc.contributor.author.fl_str_mv |
Presner, Diego Henrique |
contributor_str_mv |
Britto Júnior, Alceu de Souza Campos Junior, Arion de Maldonado e Costa, Yandre |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Identificação de plantas Auto-enconder Auto-encoder convolucional, Representações de características Combinação de classificadores Plant identification Auto-encoder Convolutional auto-encoder Feature representations Combination of classifiers |
dc.subject.por.fl_str_mv |
Identificação de plantas Auto-enconder Auto-encoder convolucional, Representações de características Combinação de classificadores Plant identification Auto-encoder Convolutional auto-encoder Feature representations Combination of classifiers |
description |
As plantas possuem um papel fundamental para a existência de vida no planeta Terra, pois elas convertem gás carbônico (CO2) em oxigênio (O2) e servem de alimento para grande parte dos seres vivos, além de serem utilizadas por diversos segmentos industriais. A importância de trabalhos na linha de pesquisa de identificação/classificação de espécies de plantas, deve-se à vasta biodiversidade, em que muitas destas sofrem risco de extinção ou até mesmo não foram catalogadas/descobertas cientificamente. Ainda, existe a dificuldade de realizar as tarefas de classificação de forma manual (humana). Estudos apontam que a forma automatizada de classificação tem sido eficiente, seus processos demandam menor tempo e quantidade de trabalho ao pesquisador, obtendo assim bons resultados na classificação e rotulação de espécies botânicas. Neste trabalho foi utilizada uma rede neural artificial conhecida como auto-encoder, em específico o auto-encoder convolucional, que emprega o método de aprendizagem não supervisionada/autodidata, utilizando as bases não rotuladas, pois estas são mais fáceis de serem encontradas digitalmente, para realizar o treinamento dos modelos computacionais com imagens de um domínio diferente e pertencentes ao mesmo domínio. Posteriormente os modelos treinados foram utilizados para gerar representações de características diferentes das bases Flavia, Leafsnap e PlantCLEF2015, estas sendo utilizadas para treinar classificadores do tipo SVM, individualmente alcançando taxas de acerto de até 95,00 %. Métodos de combinação de classificadores também foram utilizados, mostrando-se capazes de atingir resultados competitivos com os apresentados no estado da arte. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-08-17T14:09:00Z |
dc.date.available.fl_str_mv |
2022-08-17 2022-08-17T14:09:00Z |
dc.date.issued.fl_str_mv |
2022-02-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PRESNER, Diego Henrique. Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada. 2022. Dissertação (Mestrado em Computação Aplicada) - Universidade de Estadual de Ponta Grossa, Ponta Grossa, 2022. |
dc.identifier.uri.fl_str_mv |
http://tede2.uepg.br/jspui/handle/prefix/3691 |
identifier_str_mv |
PRESNER, Diego Henrique. Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada. 2022. Dissertação (Mestrado em Computação Aplicada) - Universidade de Estadual de Ponta Grossa, Ponta Grossa, 2022. |
url |
http://tede2.uepg.br/jspui/handle/prefix/3691 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Ponta Grossa |
dc.publisher.program.fl_str_mv |
Programa de Pós Graduação Computação Aplicada |
dc.publisher.initials.fl_str_mv |
UEPG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Informática |
publisher.none.fl_str_mv |
Universidade Estadual de Ponta Grossa |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UEPG instname:Universidade Estadual de Ponta Grossa (UEPG) instacron:UEPG |
instname_str |
Universidade Estadual de Ponta Grossa (UEPG) |
instacron_str |
UEPG |
institution |
UEPG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UEPG |
collection |
Biblioteca Digital de Teses e Dissertações da UEPG |
bitstream.url.fl_str_mv |
http://tede2.uepg.br/jspui/bitstream/prefix/3691/3/license.txt http://tede2.uepg.br/jspui/bitstream/prefix/3691/2/license_rdf http://tede2.uepg.br/jspui/bitstream/prefix/3691/1/Diego%20Henrique%20Presner.pdf |
bitstream.checksum.fl_str_mv |
43cd690d6a359e86c1fe3d5b7cba0c9b e39d27027a6cc9cb039ad269a5db8e34 825615b5776095afb0c738200914c090 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UEPG - Universidade Estadual de Ponta Grossa (UEPG) |
repository.mail.fl_str_mv |
bicen@uepg.br||mv_fidelis@yahoo.com.br |
_version_ |
1809460476750331904 |