EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Geo UERJ |
Texto Completo: | https://www.e-publicacoes.uerj.br/geouerj/article/view/43259 |
Resumo: | Analyzing classification algorithms of land use and land cover as well as images from sensors on satellites with different spatial resolutions are essential to determine the most suitable for each location. The objective of this study was to evaluate the efficiency of supervised classification algorithms, Maximum Likelihood (MLE) and Bhattacharyya, using medium spatial resolution (OLI/Landsat 8) and high (REIS/RapidEye) images in localized municipalities in the central of Rio Grande do Sul state. For this were used OLI/Landsat 8 and REIS/RapidEye sensor images with spatial resolution of 30 and 5 m, respectively. The classification of both images was performed by the MLE and Bhattacharyya algorithms with the definition of six classes of land use and land cover, these being Native Forest, Planted Forest, Exposed Soil, Agriculture, Field and Water. To evaluate the efficiency of the classification were used 120 points distributed randomly stratified in each municipality, 20 points in each class of land use and land cover. The quality of the classification was analyzed by Kappa and global accuracy indices, and the error of omission and commission was calculated. According to the results, the kappa index was higher for the classifications using the REIS/RapidEye sensor images for both algorithms, totaling 85.33% (MLE) and 83.67% (Bhattacharyya). In this context, it was possible to conclude that the REIS/RapidEye images and the MLE algorithm stand out for the best results, which are more adequate for the study area. |
id |
UERJ-21_2b3bc341cd3632e5c2e4a203f450c3fc |
---|---|
oai_identifier_str |
oai:ojs.www.e-publicacoes.uerj.br:article/43259 |
network_acronym_str |
UERJ-21 |
network_name_str |
Geo UERJ |
repository_id_str |
|
spelling |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERYAVALIAÇÃO DE ALGORITMOS PARA CLASSIFICAÇÃO DE USO E COBERTURA DA TERRA NA PORÇÃO CENTRAL DO RIO GRANDE DO SUL A PARTIR DE IMAGENS DE ALTA E MÉDIA RESOLUÇÃO ESPACIALLandsat 8. RapidEye. MLE. Bhattacharyya. Kappa.Landsat 8. RapidEye. MaxVer. Bhattacharyya. Kappa.Analyzing classification algorithms of land use and land cover as well as images from sensors on satellites with different spatial resolutions are essential to determine the most suitable for each location. The objective of this study was to evaluate the efficiency of supervised classification algorithms, Maximum Likelihood (MLE) and Bhattacharyya, using medium spatial resolution (OLI/Landsat 8) and high (REIS/RapidEye) images in localized municipalities in the central of Rio Grande do Sul state. For this were used OLI/Landsat 8 and REIS/RapidEye sensor images with spatial resolution of 30 and 5 m, respectively. The classification of both images was performed by the MLE and Bhattacharyya algorithms with the definition of six classes of land use and land cover, these being Native Forest, Planted Forest, Exposed Soil, Agriculture, Field and Water. To evaluate the efficiency of the classification were used 120 points distributed randomly stratified in each municipality, 20 points in each class of land use and land cover. The quality of the classification was analyzed by Kappa and global accuracy indices, and the error of omission and commission was calculated. According to the results, the kappa index was higher for the classifications using the REIS/RapidEye sensor images for both algorithms, totaling 85.33% (MLE) and 83.67% (Bhattacharyya). In this context, it was possible to conclude that the REIS/RapidEye images and the MLE algorithm stand out for the best results, which are more adequate for the study area.Analisar algoritmos de classificação do uso e cobertura da terra bem como imagens provenientes de sensores a bordo de satélites com diferentes resoluções espaciais são essenciais para determinar os mais adequados para cada local. Assim, o presente estudo tem por objetivo avaliar a eficiência de algoritmos de classificação supervisionada, Máxima Verossimilhança (MaxVer) e Bhattacharyya, utilizando imagens de resolução espacial média (OLI/Landsat 8) e alta (REIS/RapidEye), em municípios localizados na porção central do estado do Rio Grande do Sul. Foram utilizadas para a classificação imagens do sensor OLI/Landsat 8 e REIS/RapidEye, com resolução espacial de 30 e 5 m, respectivamente. A classificação de ambas as imagens foi realizada pelos algoritmos MaxVer e Bhattacharyya com a definição de seis classes de uso e cobertura da terra, sendo estas Floresta nativa, Floresta plantada, Solo exposto, Agricultura, Campo e Água. Para avaliar a eficiência da classificação foram utilizados 120 pontos distribuídos de forma aleatória estratificada em cada município, sendo 20 pontos em cada classe de uso e cobertura da terra. A qualidade da classificação foi analisada pelos índices Kappa e exatidão global, ainda, calculou-se o erro de omissão e comissão. De acordo com os resultados obtidos o índice kappa foi maior para as classificações utilizando as imagens do sensor REIS/RapidEye para ambos os algoritmos, totalizando 85,33% (MaxVer) e 83,67% (Bhattacharyya). Neste contexto, foi possível concluir que as imagens REIS/RapidEye e o algoritmo MaxVer destacaram-se obtendo os melhores resultados, sendo estes mais adequados para a área de estudo.Universidade do Estado do Rio de Janeiro2020-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.e-publicacoes.uerj.br/geouerj/article/view/4325910.12957/geouerj.2020.43259Geo UERJ; n. 37 (2020): Jul/Dez - Olhares Geográficos sobre o Moçambique; e432591981-90211415-7543reponame:Geo UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJporhttps://www.e-publicacoes.uerj.br/geouerj/article/view/43259/36672Copyright (c) 2020 Helena Silva Oliveira, Juliana Marchesan, Elisiane Alba, Dionatas Henrique Honnef, Rudiney Soares Pereirainfo:eu-repo/semantics/openAccessSilva Oliveira, HelenaMarchesan, JulianaAlba, ElisianeHonnef, Dionatas HenriqueFrigo Wolfer, MatheusSoares Pereira, Rudiney2022-02-20T22:23:21Zoai:ojs.www.e-publicacoes.uerj.br:article/43259Revistahttps://www.e-publicacoes.uerj.br/index.php/geouerjPUBhttps://www.e-publicacoes.uerj.br/index.php/geouerj/oaitunesregina@gmail.com || ppeuerj@eduerj.uerj.br || geouerj.revista@gmail.com || glauciomarafon@hotmail.com1981-90211415-7543opendoar:2022-02-20T22:23:21Geo UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false |
dc.title.none.fl_str_mv |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY AVALIAÇÃO DE ALGORITMOS PARA CLASSIFICAÇÃO DE USO E COBERTURA DA TERRA NA PORÇÃO CENTRAL DO RIO GRANDE DO SUL A PARTIR DE IMAGENS DE ALTA E MÉDIA RESOLUÇÃO ESPACIAL |
title |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY |
spellingShingle |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY Silva Oliveira, Helena Landsat 8. RapidEye. MLE. Bhattacharyya. Kappa. Landsat 8. RapidEye. MaxVer. Bhattacharyya. Kappa. |
title_short |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY |
title_full |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY |
title_fullStr |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY |
title_full_unstemmed |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY |
title_sort |
EVALUATION OF ALGORITHMS FOR LAND USE AND LAND COVER CLASSIFICATION IN THE CENTRAL PORTION OF RIO GRANDE DO SUL STATE FROM HIGH AND MEDIUM SPATIAL RESOLUTION IMAGERY |
author |
Silva Oliveira, Helena |
author_facet |
Silva Oliveira, Helena Marchesan, Juliana Alba, Elisiane Honnef, Dionatas Henrique Frigo Wolfer, Matheus Soares Pereira, Rudiney |
author_role |
author |
author2 |
Marchesan, Juliana Alba, Elisiane Honnef, Dionatas Henrique Frigo Wolfer, Matheus Soares Pereira, Rudiney |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Silva Oliveira, Helena Marchesan, Juliana Alba, Elisiane Honnef, Dionatas Henrique Frigo Wolfer, Matheus Soares Pereira, Rudiney |
dc.subject.por.fl_str_mv |
Landsat 8. RapidEye. MLE. Bhattacharyya. Kappa. Landsat 8. RapidEye. MaxVer. Bhattacharyya. Kappa. |
topic |
Landsat 8. RapidEye. MLE. Bhattacharyya. Kappa. Landsat 8. RapidEye. MaxVer. Bhattacharyya. Kappa. |
description |
Analyzing classification algorithms of land use and land cover as well as images from sensors on satellites with different spatial resolutions are essential to determine the most suitable for each location. The objective of this study was to evaluate the efficiency of supervised classification algorithms, Maximum Likelihood (MLE) and Bhattacharyya, using medium spatial resolution (OLI/Landsat 8) and high (REIS/RapidEye) images in localized municipalities in the central of Rio Grande do Sul state. For this were used OLI/Landsat 8 and REIS/RapidEye sensor images with spatial resolution of 30 and 5 m, respectively. The classification of both images was performed by the MLE and Bhattacharyya algorithms with the definition of six classes of land use and land cover, these being Native Forest, Planted Forest, Exposed Soil, Agriculture, Field and Water. To evaluate the efficiency of the classification were used 120 points distributed randomly stratified in each municipality, 20 points in each class of land use and land cover. The quality of the classification was analyzed by Kappa and global accuracy indices, and the error of omission and commission was calculated. According to the results, the kappa index was higher for the classifications using the REIS/RapidEye sensor images for both algorithms, totaling 85.33% (MLE) and 83.67% (Bhattacharyya). In this context, it was possible to conclude that the REIS/RapidEye images and the MLE algorithm stand out for the best results, which are more adequate for the study area. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-31 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.e-publicacoes.uerj.br/geouerj/article/view/43259 10.12957/geouerj.2020.43259 |
url |
https://www.e-publicacoes.uerj.br/geouerj/article/view/43259 |
identifier_str_mv |
10.12957/geouerj.2020.43259 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.e-publicacoes.uerj.br/geouerj/article/view/43259/36672 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
dc.source.none.fl_str_mv |
Geo UERJ; n. 37 (2020): Jul/Dez - Olhares Geográficos sobre o Moçambique; e43259 1981-9021 1415-7543 reponame:Geo UERJ instname:Universidade do Estado do Rio de Janeiro (UERJ) instacron:UERJ |
instname_str |
Universidade do Estado do Rio de Janeiro (UERJ) |
instacron_str |
UERJ |
institution |
UERJ |
reponame_str |
Geo UERJ |
collection |
Geo UERJ |
repository.name.fl_str_mv |
Geo UERJ - Universidade do Estado do Rio de Janeiro (UERJ) |
repository.mail.fl_str_mv |
tunesregina@gmail.com || ppeuerj@eduerj.uerj.br || geouerj.revista@gmail.com || glauciomarafon@hotmail.com |
_version_ |
1799317529633488896 |