Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UERJ |
Texto Completo: | http://www.bdtd.uerj.br/handle/1/17798 |
Resumo: | Actin is the most abundant protein in eukaryotic cells which forms filamentous polymers (F-actin) that get arrange into networks providing the skeleton of cells and play vital roles in many cellular functions. For example, prominent parallel bundles of F-actin mediate the formation and dynamics of filopodia, which are long, finger-like membrane protrusions of cells or growing nerve cells. Filopodia have important functions in cell migration and communication relevant for neural development, aging, degeneration, and regeneration. In filopodia, F-actin undergoes constant "treadmilling", i.e. backflow of the entire F-actin bundle driven by their polymerization at the distal tip of filopodia and their concomitant disassembly at the base of filopodia. An amount of actin-regulating proteins is known to mediate and regulate these processes. In addition, large amounts of monomeric G-actins are required as building blocks at the very tip of filopodia and need to travel through the entire length of the confined, narrow lumen of filopodia. To understand the mechanic basis of actin treadmilling in filopodia, this work presents an alternative stochastic model formulation to simulate molecule displacement. Unlike previous attempts, it considers not only diffusion as the essential transport mode, but adds cytoplasmic flow towards the tip (occurring to replace volume taken out by the back-flowing actin filaments), but also the specific properties and affinities of actin regulators, in particular, profilin and Ena/VASP. Integrated implementation of these physical and biochemical parameters into one computational model was possible by using particle-centered simulations, an approach that seems to be unprecedented in biological modeling. When applying this particle-centered model, filopodia grow up to about 40 µm in length, sub-filopodial flow dynamics can be deduced, and it allows to test how the different parameters contribute to filopodial dynamics. Also, it has the capacity to be refined by gradually adding more or improved parameters obtained from biological or physical studies, thus serving as an iterative medium of prediction and validation. The particle-centered model developed here clearly demonstrates the potential of this strategy for the wider application to biological problems. |
id |
UERJ_03186a6919c649652bed93f16c4e0d77 |
---|---|
oai_identifier_str |
oai:www.bdtd.uerj.br:1/17798 |
network_acronym_str |
UERJ |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
repository_id_str |
2903 |
spelling |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamicsSimulações estocásticas matemático-computacionais da provisão de actinas e polimerização em filopódiosMechanical engineeringTransport theoryStochastic processActinEngenharia mecânicaTeoria do transporteProcesso estocásticoActinaENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTEActin is the most abundant protein in eukaryotic cells which forms filamentous polymers (F-actin) that get arrange into networks providing the skeleton of cells and play vital roles in many cellular functions. For example, prominent parallel bundles of F-actin mediate the formation and dynamics of filopodia, which are long, finger-like membrane protrusions of cells or growing nerve cells. Filopodia have important functions in cell migration and communication relevant for neural development, aging, degeneration, and regeneration. In filopodia, F-actin undergoes constant "treadmilling", i.e. backflow of the entire F-actin bundle driven by their polymerization at the distal tip of filopodia and their concomitant disassembly at the base of filopodia. An amount of actin-regulating proteins is known to mediate and regulate these processes. In addition, large amounts of monomeric G-actins are required as building blocks at the very tip of filopodia and need to travel through the entire length of the confined, narrow lumen of filopodia. To understand the mechanic basis of actin treadmilling in filopodia, this work presents an alternative stochastic model formulation to simulate molecule displacement. Unlike previous attempts, it considers not only diffusion as the essential transport mode, but adds cytoplasmic flow towards the tip (occurring to replace volume taken out by the back-flowing actin filaments), but also the specific properties and affinities of actin regulators, in particular, profilin and Ena/VASP. Integrated implementation of these physical and biochemical parameters into one computational model was possible by using particle-centered simulations, an approach that seems to be unprecedented in biological modeling. When applying this particle-centered model, filopodia grow up to about 40 µm in length, sub-filopodial flow dynamics can be deduced, and it allows to test how the different parameters contribute to filopodial dynamics. Also, it has the capacity to be refined by gradually adding more or improved parameters obtained from biological or physical studies, thus serving as an iterative medium of prediction and validation. The particle-centered model developed here clearly demonstrates the potential of this strategy for the wider application to biological problems.A actina é a proteína mais abundante nas células eucarióticas, onde formam polímeros filamentosos (actina-F) e se organizam em redes que fornecem o esqueleto das células e desempenham papéis vitais em muitas funções celulares. Por exemplo, feixes paralelos proeminentes de actina-F mediam a formação e a dinâmica dos filopódios, que são longas protrusões de membrana, semelhantes a dedos, em células ou neurônios em crescimento. Os filopódios têm funções importantes na migração e comunicação celular, relevantes para o desenvolvimento neural, envelhecimento, degeneração e regeneração. No filopódio, a actina-F exibe um padrão de “esteira” constante, isto é, refluxo de todo o feixe de actina-F impulsionado por sua polimerização na ponta distal do filopódio e sua desmontagem concomitante na base do filopódio. Sabe-se que várias proteínas reguladoras da actina mediam e regulam esses processos. Além disso, grandes quantidades de actinas monoméricas são necessárias como blocos de construção na ponta dos filopódios e precisam percorrer todo o estreito espaço interno ao longo do comprimento dos filopódios. Para entender as bases mecânicas da esteira de actinas no filopódio, este trabalho apresenta uma formulação alternativa de modelo estocástico que simula os deslocamentos de moléculas. Ele considera não apenas difusão como fenômeno de transporte essencial, mas inclui fluxo citoplasmático na direção do topo (a fim de repor o volume removido pelo fluxo retrógrado dos filamentos de actina), mas também as propriedades e afinidades específicas dos reguladores de actina, em particular profilina e Ena/VASP. Uma implementação que integra parâmetros físicos e bioquímicos em um modelo computacional foi possível por meio de simulações centradas em partículas, uma abordagem que se mostra sem precedente em modelagem na biologia. Quando aplicado, o modelo centrado em partículas desenvolvido gerou filopódios de até 40 µm de comprimento, a dinâmica do fluxo interno no filopódio pôde ser deduzida e nos permitiu testar como os diferentes parâmetros contribuem para esta dinâmica. Além disso, tem a capacidade de ser refinado ao adicionar gradualmente mais ou melhores parâmetros obtidos por estudos biológicos ou físicos, servindo assim como um meio interativo de previsão e validação. O modelo centrado nas partículas desenvolvido aqui demonstra claramente o potencial desta estratégia para uma ampla aplicação em problemas biológicos.Universidade do Estado do Rio de JaneiroCentro de Tecnologia e Ciências::Faculdade de EngenhariaBrasilUERJPrograma de Pós-Graduação em Engenharia MecânicaMoura, Carlos Antônio dehttp://lattes.cnpq.br/7810980300080088Kritz, Maurício Vieirahttp://lattes.cnpq.br/7692378777904673Prokop, AndreasBarbosa, Augusto César de Castrohttp://lattes.cnpq.br/1734587740129156Peixoto, Aruquia Barbosa Matoshttp://lattes.cnpq.br/4075772468689197Santoro, Alberto Franco de Sáhttp://lattes.cnpq.br/2474284374033405Zubelli, Jorge Passamanihttp://lattes.cnpq.br/8675737468901580Leal, Thiago Franco2022-05-24T17:53:31Z2020-12-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfLEAL, Thiago Franco. Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics. 2020. 141 f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.http://www.bdtd.uerj.br/handle/1/17798enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJ2024-02-27T18:31:06Zoai:www.bdtd.uerj.br:1/17798Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T18:31:06Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false |
dc.title.none.fl_str_mv |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics Simulações estocásticas matemático-computacionais da provisão de actinas e polimerização em filopódios |
title |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics |
spellingShingle |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics Leal, Thiago Franco Mechanical engineering Transport theory Stochastic process Actin Engenharia mecânica Teoria do transporte Processo estocástico Actina ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE |
title_short |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics |
title_full |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics |
title_fullStr |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics |
title_full_unstemmed |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics |
title_sort |
Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics |
author |
Leal, Thiago Franco |
author_facet |
Leal, Thiago Franco |
author_role |
author |
dc.contributor.none.fl_str_mv |
Moura, Carlos Antônio de http://lattes.cnpq.br/7810980300080088 Kritz, Maurício Vieira http://lattes.cnpq.br/7692378777904673 Prokop, Andreas Barbosa, Augusto César de Castro http://lattes.cnpq.br/1734587740129156 Peixoto, Aruquia Barbosa Matos http://lattes.cnpq.br/4075772468689197 Santoro, Alberto Franco de Sá http://lattes.cnpq.br/2474284374033405 Zubelli, Jorge Passamani http://lattes.cnpq.br/8675737468901580 |
dc.contributor.author.fl_str_mv |
Leal, Thiago Franco |
dc.subject.por.fl_str_mv |
Mechanical engineering Transport theory Stochastic process Actin Engenharia mecânica Teoria do transporte Processo estocástico Actina ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE |
topic |
Mechanical engineering Transport theory Stochastic process Actin Engenharia mecânica Teoria do transporte Processo estocástico Actina ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE |
description |
Actin is the most abundant protein in eukaryotic cells which forms filamentous polymers (F-actin) that get arrange into networks providing the skeleton of cells and play vital roles in many cellular functions. For example, prominent parallel bundles of F-actin mediate the formation and dynamics of filopodia, which are long, finger-like membrane protrusions of cells or growing nerve cells. Filopodia have important functions in cell migration and communication relevant for neural development, aging, degeneration, and regeneration. In filopodia, F-actin undergoes constant "treadmilling", i.e. backflow of the entire F-actin bundle driven by their polymerization at the distal tip of filopodia and their concomitant disassembly at the base of filopodia. An amount of actin-regulating proteins is known to mediate and regulate these processes. In addition, large amounts of monomeric G-actins are required as building blocks at the very tip of filopodia and need to travel through the entire length of the confined, narrow lumen of filopodia. To understand the mechanic basis of actin treadmilling in filopodia, this work presents an alternative stochastic model formulation to simulate molecule displacement. Unlike previous attempts, it considers not only diffusion as the essential transport mode, but adds cytoplasmic flow towards the tip (occurring to replace volume taken out by the back-flowing actin filaments), but also the specific properties and affinities of actin regulators, in particular, profilin and Ena/VASP. Integrated implementation of these physical and biochemical parameters into one computational model was possible by using particle-centered simulations, an approach that seems to be unprecedented in biological modeling. When applying this particle-centered model, filopodia grow up to about 40 µm in length, sub-filopodial flow dynamics can be deduced, and it allows to test how the different parameters contribute to filopodial dynamics. Also, it has the capacity to be refined by gradually adding more or improved parameters obtained from biological or physical studies, thus serving as an iterative medium of prediction and validation. The particle-centered model developed here clearly demonstrates the potential of this strategy for the wider application to biological problems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-28 2022-05-24T17:53:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LEAL, Thiago Franco. Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics. 2020. 141 f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020. http://www.bdtd.uerj.br/handle/1/17798 |
identifier_str_mv |
LEAL, Thiago Franco. Stochastic mathematical-computational simulations to unravel mechanical relations of fluid flow and influence of actin regulators on filopodial dynamics. 2020. 141 f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020. |
url |
http://www.bdtd.uerj.br/handle/1/17798 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro Centro de Tecnologia e Ciências::Faculdade de Engenharia Brasil UERJ Programa de Pós-Graduação em Engenharia Mecânica |
publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro Centro de Tecnologia e Ciências::Faculdade de Engenharia Brasil UERJ Programa de Pós-Graduação em Engenharia Mecânica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UERJ instname:Universidade do Estado do Rio de Janeiro (UERJ) instacron:UERJ |
instname_str |
Universidade do Estado do Rio de Janeiro (UERJ) |
instacron_str |
UERJ |
institution |
UERJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
collection |
Biblioteca Digital de Teses e Dissertações da UERJ |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ) |
repository.mail.fl_str_mv |
bdtd.suporte@uerj.br |
_version_ |
1818990669122764800 |