Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina

Detalhes bibliográficos
Autor(a) principal: Souza Filho, Erito Marques de
Data de Publicação: 2022
Outros Autores: mederitomarques@gmail.com
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UERJ
Texto Completo: http://www.bdtd.uerj.br/handle/1/18056
Resumo: Depression is an omnipresent disease, with a high prevalence in the world, high economic burden and generally associated as a risk factor for absenteeism at work and suicide. On the other hand, the advent of the COVID-19 pandemic brought a myriad of challenges and obstacles to be overcome, such as unemployment, social isolation, the obligatory use of a mask, the need for a respiratory tag, the impossibility of attending different places for leisure and entertainment, the reduction of contact with family members, the loss of loved ones. All of them are examples of these important challenges regarding the promotion of mental health problems: this panorama that has increased (three times) the prevalence of depressive symptoms. The treatment of this disease involves the use of several methods, such as the use of antidepressants and psychotherapy. However, many individuals do not receive adequate treatment, simply because they remain undiagnosed. In this context, in this work Machine Learning tools were used to assess their performance regarding the diagnostic screening of patients with undiagnosed depression. Sociodemographic, clinical and laboratory data collected from 2016 to 2018 by the Cardiovascular Disease Research Network were used and eight different models were tested, namely, Logistic Regression, K-Nearest Neighbors, Classification and Regression Trees, Adaptive Boosting, Gradient Boosting, Extreme Gradient Boosting, CatBoost, Support Vector Machine and Random Forest. Support Vector Machine had the best performance, having obtained an area below the receiver operating characteristic curve equal to 0.74 and accuracy of 0.77. From the treatment point of view, it represents a new screening tool, which can assist in reducing the number of undiagnosed cases of the disease, in addition to facilitating early treatment initiation.
id UERJ_183d2743c9127d162fb94984b7babfad
oai_identifier_str oai:www.bdtd.uerj.br:1/18056
network_acronym_str UERJ
network_name_str Biblioteca Digital de Teses e Dissertações da UERJ
repository_id_str 2903
spelling Amaral, Jorge Luís Machado dohttp://lattes.cnpq.br/1000528740958810Mendlowicz, Mauro Vitorhttp://lattes.cnpq.br/5365289174073839Barbosa, Carlos Roberto Hallhttp://lattes.cnpq.br/9900625695933750Dias, Douglas Motahttp://lattes.cnpq.br/3426085961007140http://lattes.cnpq.br/0606341154404244Souza Filho, Erito Marques demederitomarques@gmail.com2022-07-14T20:29:44Z2022-04-27SOUZA FILHO, Erito Marques de. Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina. 2022. 129 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.http://www.bdtd.uerj.br/handle/1/18056Depression is an omnipresent disease, with a high prevalence in the world, high economic burden and generally associated as a risk factor for absenteeism at work and suicide. On the other hand, the advent of the COVID-19 pandemic brought a myriad of challenges and obstacles to be overcome, such as unemployment, social isolation, the obligatory use of a mask, the need for a respiratory tag, the impossibility of attending different places for leisure and entertainment, the reduction of contact with family members, the loss of loved ones. All of them are examples of these important challenges regarding the promotion of mental health problems: this panorama that has increased (three times) the prevalence of depressive symptoms. The treatment of this disease involves the use of several methods, such as the use of antidepressants and psychotherapy. However, many individuals do not receive adequate treatment, simply because they remain undiagnosed. In this context, in this work Machine Learning tools were used to assess their performance regarding the diagnostic screening of patients with undiagnosed depression. Sociodemographic, clinical and laboratory data collected from 2016 to 2018 by the Cardiovascular Disease Research Network were used and eight different models were tested, namely, Logistic Regression, K-Nearest Neighbors, Classification and Regression Trees, Adaptive Boosting, Gradient Boosting, Extreme Gradient Boosting, CatBoost, Support Vector Machine and Random Forest. Support Vector Machine had the best performance, having obtained an area below the receiver operating characteristic curve equal to 0.74 and accuracy of 0.77. From the treatment point of view, it represents a new screening tool, which can assist in reducing the number of undiagnosed cases of the disease, in addition to facilitating early treatment initiation.A depressão é uma doença onipresente, com uma alta prevalência no mundo, elevado ônus econômico e geralmente associada como fator de risco para absenteísmo no trabalho e suicídio. Por outro lado, o advento da pandemia por COVID-19 trouxe uma miríade de desafios e obstáculos a serem transpostos, como o desemprego, o isolamento social, o uso obrigatório de máscara, a necessidade de uma etiqueta respiratória, a impossibilidade de frequentar diversos locais para lazer e entretenimento, a diminuição de contato com familiares e a perda de entes queridos– panorama esse que aumentou a prevalência de sintomas depressivos. O tratamento dessa doença envolve o uso de diversos métodos, como o uso de antidepressivos e psicoterapia. No entanto, muitos indivíduos não recebem tratamento adequado, simplesmente porque permanecem sem diagnóstico. Nesse contexto, no presente trabalho foram utilizadas ferramentas de Aprendizado de Máquina para avaliar seu desempenho no tocante à triagem diagnóstica de pacientes com depressão não diagnosticada. Foram utilizados dados sociodemográficos, clínicos e laboratoriais coletados no período de 2016 a 2018 pela Rede de Pesquisa de Doenças Cardiovasculares e testados oito modelos distintos, a saber, Logistic Regression, K-Nearest Neighboors, Classification And Regression Trees, Adaptive Boosting, Gradient Boosting, Extreme Gradient Boosting, CatBoost, Support Vector Machine e Random Forest. Support Vector Machine teve o melhor desempenho, tendo obtido área abaixo da curva característica de operação do receptor igual a 0,74 e acurácia de 0,77. Do ponto de vista do tratamento, representa uma nova ferramenta de rastreamento, que pode auxiliar na redução do número de casos não diagnosticados da doença, além de facilitar o início precoce do tratamento.Submitted by Julia CTC/B (julia.vieira@uerj.br) on 2022-07-14T20:29:44Z No. of bitstreams: 1 Dissertação - Erito Marques de Souza Filho - 2022 - Completo.pdf: 2389009 bytes, checksum: 7498a88d92028b9101627dd8b195c194 (MD5)Made available in DSpace on 2022-07-14T20:29:44Z (GMT). No. of bitstreams: 1 Dissertação - Erito Marques de Souza Filho - 2022 - Completo.pdf: 2389009 bytes, checksum: 7498a88d92028b9101627dd8b195c194 (MD5) Previous issue date: 2022-04-27application/pdfporUniversidade do Estado do Rio de JaneiroPrograma de Pós-Graduação em Engenharia EletrônicaUERJBrasilCentro de Tecnologia e Ciências::Faculdade de EngenhariaElectronic engineeringComputer learningDiagnosisComputational algorithmsEngenharia eletrônicaAprendizado do computadorDiagnósticoAlgoritmos computacionaisENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOSTriagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquinaScreening patients with depression in primary care using machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJORIGINALDissertação - Erito Marques de Souza Filho - 2022 - Completo.pdfDissertação - Erito Marques de Souza Filho - 2022 - Completo.pdfapplication/pdf2389009http://www.bdtd.uerj.br/bitstream/1/18056/2/Disserta%C3%A7%C3%A3o+-+Erito+Marques+de+Souza+Filho+-+2022+-+Completo.pdf7498a88d92028b9101627dd8b195c194MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82123http://www.bdtd.uerj.br/bitstream/1/18056/1/license.txte5502652da718045d7fcd832b79fca29MD511/180562024-02-27 15:16:49.623oai:www.bdtd.uerj.br:1/18056Tk9UQTogTElDRU7Dh0EgUkVERSBTSVJJVVMKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSAKZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSAKY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIApkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUVSSiBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIApBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE7Dg08gU0VKQSBFU1RBClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVbml2ZXJzaWRhZGUgZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T18:16:49Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false
dc.title.por.fl_str_mv Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
dc.title.alternative.eng.fl_str_mv Screening patients with depression in primary care using machine learning
title Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
spellingShingle Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
Souza Filho, Erito Marques de
Electronic engineering
Computer learning
Diagnosis
Computational algorithms
Engenharia eletrônica
Aprendizado do computador
Diagnóstico
Algoritmos computacionais
ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS
title_short Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
title_full Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
title_fullStr Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
title_full_unstemmed Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
title_sort Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina
author Souza Filho, Erito Marques de
author_facet Souza Filho, Erito Marques de
mederitomarques@gmail.com
author_role author
author2 mederitomarques@gmail.com
author2_role author
dc.contributor.advisor1.fl_str_mv Amaral, Jorge Luís Machado do
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1000528740958810
dc.contributor.referee1.fl_str_mv Mendlowicz, Mauro Vitor
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5365289174073839
dc.contributor.referee2.fl_str_mv Barbosa, Carlos Roberto Hall
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/9900625695933750
dc.contributor.referee3.fl_str_mv Dias, Douglas Mota
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3426085961007140
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0606341154404244
dc.contributor.author.fl_str_mv Souza Filho, Erito Marques de
mederitomarques@gmail.com
contributor_str_mv Amaral, Jorge Luís Machado do
Mendlowicz, Mauro Vitor
Barbosa, Carlos Roberto Hall
Dias, Douglas Mota
dc.subject.eng.fl_str_mv Electronic engineering
Computer learning
Diagnosis
Computational algorithms
topic Electronic engineering
Computer learning
Diagnosis
Computational algorithms
Engenharia eletrônica
Aprendizado do computador
Diagnóstico
Algoritmos computacionais
ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS
dc.subject.por.fl_str_mv Engenharia eletrônica
Aprendizado do computador
Diagnóstico
Algoritmos computacionais
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS
description Depression is an omnipresent disease, with a high prevalence in the world, high economic burden and generally associated as a risk factor for absenteeism at work and suicide. On the other hand, the advent of the COVID-19 pandemic brought a myriad of challenges and obstacles to be overcome, such as unemployment, social isolation, the obligatory use of a mask, the need for a respiratory tag, the impossibility of attending different places for leisure and entertainment, the reduction of contact with family members, the loss of loved ones. All of them are examples of these important challenges regarding the promotion of mental health problems: this panorama that has increased (three times) the prevalence of depressive symptoms. The treatment of this disease involves the use of several methods, such as the use of antidepressants and psychotherapy. However, many individuals do not receive adequate treatment, simply because they remain undiagnosed. In this context, in this work Machine Learning tools were used to assess their performance regarding the diagnostic screening of patients with undiagnosed depression. Sociodemographic, clinical and laboratory data collected from 2016 to 2018 by the Cardiovascular Disease Research Network were used and eight different models were tested, namely, Logistic Regression, K-Nearest Neighbors, Classification and Regression Trees, Adaptive Boosting, Gradient Boosting, Extreme Gradient Boosting, CatBoost, Support Vector Machine and Random Forest. Support Vector Machine had the best performance, having obtained an area below the receiver operating characteristic curve equal to 0.74 and accuracy of 0.77. From the treatment point of view, it represents a new screening tool, which can assist in reducing the number of undiagnosed cases of the disease, in addition to facilitating early treatment initiation.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-07-14T20:29:44Z
dc.date.issued.fl_str_mv 2022-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA FILHO, Erito Marques de. Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina. 2022. 129 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.
dc.identifier.uri.fl_str_mv http://www.bdtd.uerj.br/handle/1/18056
identifier_str_mv SOUZA FILHO, Erito Marques de. Triagem de pacientes com depressão na atenção primária usando ferramentas de aprendizado de máquina. 2022. 129 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.
url http://www.bdtd.uerj.br/handle/1/18056
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Eletrônica
dc.publisher.initials.fl_str_mv UERJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Tecnologia e Ciências::Faculdade de Engenharia
publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UERJ
instname:Universidade do Estado do Rio de Janeiro (UERJ)
instacron:UERJ
instname_str Universidade do Estado do Rio de Janeiro (UERJ)
instacron_str UERJ
institution UERJ
reponame_str Biblioteca Digital de Teses e Dissertações da UERJ
collection Biblioteca Digital de Teses e Dissertações da UERJ
bitstream.url.fl_str_mv http://www.bdtd.uerj.br/bitstream/1/18056/2/Disserta%C3%A7%C3%A3o+-+Erito+Marques+de+Souza+Filho+-+2022+-+Completo.pdf
http://www.bdtd.uerj.br/bitstream/1/18056/1/license.txt
bitstream.checksum.fl_str_mv 7498a88d92028b9101627dd8b195c194
e5502652da718045d7fcd832b79fca29
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)
repository.mail.fl_str_mv bdtd.suporte@uerj.br
_version_ 1811728714186096640