Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UERJ |
Texto Completo: | http://www.bdtd.uerj.br/handle/1/18344 |
Resumo: | This research aims to analyze the predictive capacity of financial accounting indicators in the probability of insolvency of electricity distributors. Through the analysis of the financial statements published on the website of the National Electric Energy Agency (ANEEL) of 63 distribution concessionaires, in the period 2011-2018. This research has the characteristic of being a bibliographic, descriptive and quantitative study. The collected data were submitted to the calculations of the indicators participating in the research, as established by accounting theory. Soon after, the data were submitted to an exploratory analysis, proceeding to a screening of the 18 indicators selected for the research (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL AND PNT), where all indicators were presented with statistically significant results. However, the indicators ENDF, ENTOT, ROE, EBTDF, had unexpected results from the perspective of accounting theory, and thus were discarded. In view of this, 14 indicators were considered for the continuity of the modeling. These 14 indicators were separated into insample (used to adjust the model) and outsample (used to assess the predictive capacity of adjusted models). Then, a search was made for all logistic regression models in which the regression coefficients were statistically significant at the level of 10%. For the selection of the best models, the AIC criterion, ROC curve, hit rate and Akaike Weights were used. Then, 6,479 models were fitted, but only 105 models presented statistically significant regression coefficients and with the expected signs, according to accounting theory, in the period 2011-2015. Thus, the indicators were identified: LLRL, DEFIN, LG, INFIN and PNT as relevant indicators to predict insolvency. To establish the robustness of the modeling, data from the 2011-2017 period were used, where 6,479 adjusted models were obtained, having 134 models with statistically significant regression coefficients and with the expected signs, according to accounting theory. During this period, the indicators were identified: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL and ROA. Finally, after analyzing these two periods, 5 relevant indicators were identified to predict the insolvency of electricity distributors: DEFIN, INFIN, PNT, LG and LLRL. |
id |
UERJ_4f14351d9ce862763da070d4584a563a |
---|---|
oai_identifier_str |
oai:www.bdtd.uerj.br:1/18344 |
network_acronym_str |
UERJ |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
repository_id_str |
2903 |
spelling |
Pessanha, José Francisco Moreirahttp://lattes.cnpq.br/3384481291163061Duque, Andréa Paula Osóriohttp://lattes.cnpq.br/3034176309849515Bonfim, Mariana Pereirahttp://lattes.cnpq.br/6281056363283128http://lattes.cnpq.br/7856074751007984Silva, Shirley Fernandes Pereira dashirley.fernandes99@hotmail.com2022-09-08T13:46:22Z2020-06-30SILVA, Shirley Fernandes Pereira da. Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil.. 2020. 91 f. Dissertação (Mestrado em Ciências Contábeis) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.http://www.bdtd.uerj.br/handle/1/18344This research aims to analyze the predictive capacity of financial accounting indicators in the probability of insolvency of electricity distributors. Through the analysis of the financial statements published on the website of the National Electric Energy Agency (ANEEL) of 63 distribution concessionaires, in the period 2011-2018. This research has the characteristic of being a bibliographic, descriptive and quantitative study. The collected data were submitted to the calculations of the indicators participating in the research, as established by accounting theory. Soon after, the data were submitted to an exploratory analysis, proceeding to a screening of the 18 indicators selected for the research (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL AND PNT), where all indicators were presented with statistically significant results. However, the indicators ENDF, ENTOT, ROE, EBTDF, had unexpected results from the perspective of accounting theory, and thus were discarded. In view of this, 14 indicators were considered for the continuity of the modeling. These 14 indicators were separated into insample (used to adjust the model) and outsample (used to assess the predictive capacity of adjusted models). Then, a search was made for all logistic regression models in which the regression coefficients were statistically significant at the level of 10%. For the selection of the best models, the AIC criterion, ROC curve, hit rate and Akaike Weights were used. Then, 6,479 models were fitted, but only 105 models presented statistically significant regression coefficients and with the expected signs, according to accounting theory, in the period 2011-2015. Thus, the indicators were identified: LLRL, DEFIN, LG, INFIN and PNT as relevant indicators to predict insolvency. To establish the robustness of the modeling, data from the 2011-2017 period were used, where 6,479 adjusted models were obtained, having 134 models with statistically significant regression coefficients and with the expected signs, according to accounting theory. During this period, the indicators were identified: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL and ROA. Finally, after analyzing these two periods, 5 relevant indicators were identified to predict the insolvency of electricity distributors: DEFIN, INFIN, PNT, LG and LLRL.Esta pesquisa tem como objetivo analisar a capacidade preditiva dos indicadores contábeis financeiros na probabilidade de insolvência das distribuidoras de energia elétrica. Por intermédio da análise das demonstrações contábeis divulgadas no site da Agência Nacional de Energia Elétrica (ANEEL) de 63 concessionárias de distribuição, no período de 2011-2018. Essa pesquisa tem como característica ser um estudo bibliográfico, descritivo e quantitativo. Os dados coletados foram submetidos aos cálculos dos indicadores participantes da pesquisa, conforme estabelecido pela teoria contábil. Logo em seguida, os dados foram submetidos a uma análise exploratória, procedendo a uma triagem dos 18 indicadores selecionados para a pesquisa (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL E PNT), onde todos os indicadores se apresentaram com resultados estatisticamente significativos. No entanto, os indicadores ENDF, ENTOT, ROE, EBTDF, tiveram resultados inesperados sob a ótica da teoria contábil, e desta forma, foram descartados. Diante disto, foram considerados 14 indicadores para a continuidade da modelagem. Esses 14 indicadores foram separados em conjuntos insample (usados para ajustar o modelo) e outsample (usado para avaliar a capacidade preditiva dos modelos ajustados). Em seguida foi feita uma busca exaustiva de todos os modelos de regressão logística nos quais os coeficientes de regressão fossem estatisticamente significativos ao nível de 10%. Para a seleção dos melhores modelos utilizou-se o critério AIC, curva de ROC, taxa de acerto e Akaike Weights. Em face disto, foram avaliados 6.479 modelos, mas somente 105 modelos tiveram coeficientes de regressão estatisticamente significativos e com os sinais esperados, conforme a teoria contábil, no período de 2011-2015. Assim, foram identificados os indicadores: LLRL, DEFIN, LG, INFIN e PNT como indicadores relevantes para prever a insolvência. Para estabelecer a robustez da modelagem utilizou-se dados do período de 2011-2017, onde foram obtidos 6.479 modelos ajustados sendo que 134 modelos apresentaram coeficientes de regressão estatisticamente significativos e com os sinais esperados, conforme a teoria contábil. Nesse período foram identificados os indicadores: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL e ROA. Por fim, após a análise desses dois períodos foram identificados 5 indicadores relevantes para a previsão da insolvência das distribuidoras de energia elétrica: DEFIN, INFIN, PNT, LG e LLRL.Submitted by Luciana CCS/B (luciana.zohrer@uerj.br) on 2022-09-08T13:46:21Z No. of bitstreams: 1 Dissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdf: 1988831 bytes, checksum: d6ba16012e61ac6af40e3891d0557a8f (MD5)Made available in DSpace on 2022-09-08T13:46:22Z (GMT). No. of bitstreams: 1 Dissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdf: 1988831 bytes, checksum: d6ba16012e61ac6af40e3891d0557a8f (MD5) Previous issue date: 2020-06-30application/pdfporUniversidade do Estado do Rio de JaneiroPrograma de Pós-Graduação em Ciências ContábeisUERJBrasilCentro de Ciências Sociais::Faculdade de Administração e FinançasElectric Power DistributorsInsolvencyAccounting IndicatorsRegression ModelPanel DataDistribuidoras de Energia ElétricaInsolvênciaIndicadores contábeisModelo de Regressão LogísticaDados em painelServiços de eletricidade – Contabilidade – BrasilServiços de eletricidade – Falência – BrasilCIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEISIndicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no BrasilFinancial accounting indicators and predictability insolvency of distributors of electric power in Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJORIGINALDissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdfDissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdfapplication/pdf1988831http://www.bdtd.uerj.br/bitstream/1/18344/2/Disserta%C3%A7%C3%A3o+-+Shirley+Fernandes+Pereira+da+Silva+-+2020+-+completa.pdfd6ba16012e61ac6af40e3891d0557a8fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82123http://www.bdtd.uerj.br/bitstream/1/18344/1/license.txte5502652da718045d7fcd832b79fca29MD511/183442024-02-26 16:50:39.326oai:www.bdtd.uerj.br:1/18344Tk9UQTogTElDRU7Dh0EgUkVERSBTSVJJVVMKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSAKZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSAKY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIApkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUVSSiBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIApBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE7Dg08gU0VKQSBFU1RBClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVbml2ZXJzaWRhZGUgZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-26T19:50:39Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false |
dc.title.por.fl_str_mv |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil |
dc.title.alternative.eng.fl_str_mv |
Financial accounting indicators and predictability insolvency of distributors of electric power in Brazil |
title |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil |
spellingShingle |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil Silva, Shirley Fernandes Pereira da Electric Power Distributors Insolvency Accounting Indicators Regression Model Panel Data Distribuidoras de Energia Elétrica Insolvência Indicadores contábeis Modelo de Regressão Logística Dados em painel Serviços de eletricidade – Contabilidade – Brasil Serviços de eletricidade – Falência – Brasil CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS |
title_short |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil |
title_full |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil |
title_fullStr |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil |
title_full_unstemmed |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil |
title_sort |
Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil |
author |
Silva, Shirley Fernandes Pereira da |
author_facet |
Silva, Shirley Fernandes Pereira da shirley.fernandes99@hotmail.com |
author_role |
author |
author2 |
shirley.fernandes99@hotmail.com |
author2_role |
author |
dc.contributor.advisor1.fl_str_mv |
Pessanha, José Francisco Moreira |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3384481291163061 |
dc.contributor.referee1.fl_str_mv |
Duque, Andréa Paula Osório |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3034176309849515 |
dc.contributor.referee2.fl_str_mv |
Bonfim, Mariana Pereira |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6281056363283128 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7856074751007984 |
dc.contributor.author.fl_str_mv |
Silva, Shirley Fernandes Pereira da shirley.fernandes99@hotmail.com |
contributor_str_mv |
Pessanha, José Francisco Moreira Duque, Andréa Paula Osório Bonfim, Mariana Pereira |
dc.subject.eng.fl_str_mv |
Electric Power Distributors Insolvency Accounting Indicators Regression Model Panel Data |
topic |
Electric Power Distributors Insolvency Accounting Indicators Regression Model Panel Data Distribuidoras de Energia Elétrica Insolvência Indicadores contábeis Modelo de Regressão Logística Dados em painel Serviços de eletricidade – Contabilidade – Brasil Serviços de eletricidade – Falência – Brasil CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS |
dc.subject.por.fl_str_mv |
Distribuidoras de Energia Elétrica Insolvência Indicadores contábeis Modelo de Regressão Logística Dados em painel Serviços de eletricidade – Contabilidade – Brasil Serviços de eletricidade – Falência – Brasil |
dc.subject.cnpq.fl_str_mv |
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS |
description |
This research aims to analyze the predictive capacity of financial accounting indicators in the probability of insolvency of electricity distributors. Through the analysis of the financial statements published on the website of the National Electric Energy Agency (ANEEL) of 63 distribution concessionaires, in the period 2011-2018. This research has the characteristic of being a bibliographic, descriptive and quantitative study. The collected data were submitted to the calculations of the indicators participating in the research, as established by accounting theory. Soon after, the data were submitted to an exploratory analysis, proceeding to a screening of the 18 indicators selected for the research (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL AND PNT), where all indicators were presented with statistically significant results. However, the indicators ENDF, ENTOT, ROE, EBTDF, had unexpected results from the perspective of accounting theory, and thus were discarded. In view of this, 14 indicators were considered for the continuity of the modeling. These 14 indicators were separated into insample (used to adjust the model) and outsample (used to assess the predictive capacity of adjusted models). Then, a search was made for all logistic regression models in which the regression coefficients were statistically significant at the level of 10%. For the selection of the best models, the AIC criterion, ROC curve, hit rate and Akaike Weights were used. Then, 6,479 models were fitted, but only 105 models presented statistically significant regression coefficients and with the expected signs, according to accounting theory, in the period 2011-2015. Thus, the indicators were identified: LLRL, DEFIN, LG, INFIN and PNT as relevant indicators to predict insolvency. To establish the robustness of the modeling, data from the 2011-2017 period were used, where 6,479 adjusted models were obtained, having 134 models with statistically significant regression coefficients and with the expected signs, according to accounting theory. During this period, the indicators were identified: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL and ROA. Finally, after analyzing these two periods, 5 relevant indicators were identified to predict the insolvency of electricity distributors: DEFIN, INFIN, PNT, LG and LLRL. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-06-30 |
dc.date.accessioned.fl_str_mv |
2022-09-08T13:46:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Shirley Fernandes Pereira da. Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil.. 2020. 91 f. Dissertação (Mestrado em Ciências Contábeis) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020. |
dc.identifier.uri.fl_str_mv |
http://www.bdtd.uerj.br/handle/1/18344 |
identifier_str_mv |
SILVA, Shirley Fernandes Pereira da. Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil.. 2020. 91 f. Dissertação (Mestrado em Ciências Contábeis) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020. |
url |
http://www.bdtd.uerj.br/handle/1/18344 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Contábeis |
dc.publisher.initials.fl_str_mv |
UERJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Sociais::Faculdade de Administração e Finanças |
publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UERJ instname:Universidade do Estado do Rio de Janeiro (UERJ) instacron:UERJ |
instname_str |
Universidade do Estado do Rio de Janeiro (UERJ) |
instacron_str |
UERJ |
institution |
UERJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
collection |
Biblioteca Digital de Teses e Dissertações da UERJ |
bitstream.url.fl_str_mv |
http://www.bdtd.uerj.br/bitstream/1/18344/2/Disserta%C3%A7%C3%A3o+-+Shirley+Fernandes+Pereira+da+Silva+-+2020+-+completa.pdf http://www.bdtd.uerj.br/bitstream/1/18344/1/license.txt |
bitstream.checksum.fl_str_mv |
d6ba16012e61ac6af40e3891d0557a8f e5502652da718045d7fcd832b79fca29 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ) |
repository.mail.fl_str_mv |
bdtd.suporte@uerj.br |
_version_ |
1811728717409419264 |