Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil

Detalhes bibliográficos
Autor(a) principal: Silva, Shirley Fernandes Pereira da
Data de Publicação: 2020
Outros Autores: shirley.fernandes99@hotmail.com
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UERJ
Texto Completo: http://www.bdtd.uerj.br/handle/1/18344
Resumo: This research aims to analyze the predictive capacity of financial accounting indicators in the probability of insolvency of electricity distributors. Through the analysis of the financial statements published on the website of the National Electric Energy Agency (ANEEL) of 63 distribution concessionaires, in the period 2011-2018. This research has the characteristic of being a bibliographic, descriptive and quantitative study. The collected data were submitted to the calculations of the indicators participating in the research, as established by accounting theory. Soon after, the data were submitted to an exploratory analysis, proceeding to a screening of the 18 indicators selected for the research (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL AND PNT), where all indicators were presented with statistically significant results. However, the indicators ENDF, ENTOT, ROE, EBTDF, had unexpected results from the perspective of accounting theory, and thus were discarded. In view of this, 14 indicators were considered for the continuity of the modeling. These 14 indicators were separated into insample (used to adjust the model) and outsample (used to assess the predictive capacity of adjusted models). Then, a search was made for all logistic regression models in which the regression coefficients were statistically significant at the level of 10%. For the selection of the best models, the AIC criterion, ROC curve, hit rate and Akaike Weights were used. Then, 6,479 models were fitted, but only 105 models presented statistically significant regression coefficients and with the expected signs, according to accounting theory, in the period 2011-2015. Thus, the indicators were identified: LLRL, DEFIN, LG, INFIN and PNT as relevant indicators to predict insolvency. To establish the robustness of the modeling, data from the 2011-2017 period were used, where 6,479 adjusted models were obtained, having 134 models with statistically significant regression coefficients and with the expected signs, according to accounting theory. During this period, the indicators were identified: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL and ROA. Finally, after analyzing these two periods, 5 relevant indicators were identified to predict the insolvency of electricity distributors: DEFIN, INFIN, PNT, LG and LLRL.
id UERJ_4f14351d9ce862763da070d4584a563a
oai_identifier_str oai:www.bdtd.uerj.br:1/18344
network_acronym_str UERJ
network_name_str Biblioteca Digital de Teses e Dissertações da UERJ
repository_id_str 2903
spelling Pessanha, José Francisco Moreirahttp://lattes.cnpq.br/3384481291163061Duque, Andréa Paula Osóriohttp://lattes.cnpq.br/3034176309849515Bonfim, Mariana Pereirahttp://lattes.cnpq.br/6281056363283128http://lattes.cnpq.br/7856074751007984Silva, Shirley Fernandes Pereira dashirley.fernandes99@hotmail.com2022-09-08T13:46:22Z2020-06-30SILVA, Shirley Fernandes Pereira da. Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil.. 2020. 91 f. Dissertação (Mestrado em Ciências Contábeis) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.http://www.bdtd.uerj.br/handle/1/18344This research aims to analyze the predictive capacity of financial accounting indicators in the probability of insolvency of electricity distributors. Through the analysis of the financial statements published on the website of the National Electric Energy Agency (ANEEL) of 63 distribution concessionaires, in the period 2011-2018. This research has the characteristic of being a bibliographic, descriptive and quantitative study. The collected data were submitted to the calculations of the indicators participating in the research, as established by accounting theory. Soon after, the data were submitted to an exploratory analysis, proceeding to a screening of the 18 indicators selected for the research (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL AND PNT), where all indicators were presented with statistically significant results. However, the indicators ENDF, ENTOT, ROE, EBTDF, had unexpected results from the perspective of accounting theory, and thus were discarded. In view of this, 14 indicators were considered for the continuity of the modeling. These 14 indicators were separated into insample (used to adjust the model) and outsample (used to assess the predictive capacity of adjusted models). Then, a search was made for all logistic regression models in which the regression coefficients were statistically significant at the level of 10%. For the selection of the best models, the AIC criterion, ROC curve, hit rate and Akaike Weights were used. Then, 6,479 models were fitted, but only 105 models presented statistically significant regression coefficients and with the expected signs, according to accounting theory, in the period 2011-2015. Thus, the indicators were identified: LLRL, DEFIN, LG, INFIN and PNT as relevant indicators to predict insolvency. To establish the robustness of the modeling, data from the 2011-2017 period were used, where 6,479 adjusted models were obtained, having 134 models with statistically significant regression coefficients and with the expected signs, according to accounting theory. During this period, the indicators were identified: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL and ROA. Finally, after analyzing these two periods, 5 relevant indicators were identified to predict the insolvency of electricity distributors: DEFIN, INFIN, PNT, LG and LLRL.Esta pesquisa tem como objetivo analisar a capacidade preditiva dos indicadores contábeis financeiros na probabilidade de insolvência das distribuidoras de energia elétrica. Por intermédio da análise das demonstrações contábeis divulgadas no site da Agência Nacional de Energia Elétrica (ANEEL) de 63 concessionárias de distribuição, no período de 2011-2018. Essa pesquisa tem como característica ser um estudo bibliográfico, descritivo e quantitativo. Os dados coletados foram submetidos aos cálculos dos indicadores participantes da pesquisa, conforme estabelecido pela teoria contábil. Logo em seguida, os dados foram submetidos a uma análise exploratória, procedendo a uma triagem dos 18 indicadores selecionados para a pesquisa (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL E PNT), onde todos os indicadores se apresentaram com resultados estatisticamente significativos. No entanto, os indicadores ENDF, ENTOT, ROE, EBTDF, tiveram resultados inesperados sob a ótica da teoria contábil, e desta forma, foram descartados. Diante disto, foram considerados 14 indicadores para a continuidade da modelagem. Esses 14 indicadores foram separados em conjuntos insample (usados para ajustar o modelo) e outsample (usado para avaliar a capacidade preditiva dos modelos ajustados). Em seguida foi feita uma busca exaustiva de todos os modelos de regressão logística nos quais os coeficientes de regressão fossem estatisticamente significativos ao nível de 10%. Para a seleção dos melhores modelos utilizou-se o critério AIC, curva de ROC, taxa de acerto e Akaike Weights. Em face disto, foram avaliados 6.479 modelos, mas somente 105 modelos tiveram coeficientes de regressão estatisticamente significativos e com os sinais esperados, conforme a teoria contábil, no período de 2011-2015. Assim, foram identificados os indicadores: LLRL, DEFIN, LG, INFIN e PNT como indicadores relevantes para prever a insolvência. Para estabelecer a robustez da modelagem utilizou-se dados do período de 2011-2017, onde foram obtidos 6.479 modelos ajustados sendo que 134 modelos apresentaram coeficientes de regressão estatisticamente significativos e com os sinais esperados, conforme a teoria contábil. Nesse período foram identificados os indicadores: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL e ROA. Por fim, após a análise desses dois períodos foram identificados 5 indicadores relevantes para a previsão da insolvência das distribuidoras de energia elétrica: DEFIN, INFIN, PNT, LG e LLRL.Submitted by Luciana CCS/B (luciana.zohrer@uerj.br) on 2022-09-08T13:46:21Z No. of bitstreams: 1 Dissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdf: 1988831 bytes, checksum: d6ba16012e61ac6af40e3891d0557a8f (MD5)Made available in DSpace on 2022-09-08T13:46:22Z (GMT). No. of bitstreams: 1 Dissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdf: 1988831 bytes, checksum: d6ba16012e61ac6af40e3891d0557a8f (MD5) Previous issue date: 2020-06-30application/pdfporUniversidade do Estado do Rio de JaneiroPrograma de Pós-Graduação em Ciências ContábeisUERJBrasilCentro de Ciências Sociais::Faculdade de Administração e FinançasElectric Power DistributorsInsolvencyAccounting IndicatorsRegression ModelPanel DataDistribuidoras de Energia ElétricaInsolvênciaIndicadores contábeisModelo de Regressão LogísticaDados em painelServiços de eletricidade – Contabilidade – BrasilServiços de eletricidade – Falência – BrasilCIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEISIndicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no BrasilFinancial accounting indicators and predictability insolvency of distributors of electric power in Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJORIGINALDissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdfDissertação - Shirley Fernandes Pereira da Silva - 2020 - completa.pdfapplication/pdf1988831http://www.bdtd.uerj.br/bitstream/1/18344/2/Disserta%C3%A7%C3%A3o+-+Shirley+Fernandes+Pereira+da+Silva+-+2020+-+completa.pdfd6ba16012e61ac6af40e3891d0557a8fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82123http://www.bdtd.uerj.br/bitstream/1/18344/1/license.txte5502652da718045d7fcd832b79fca29MD511/183442024-02-26 16:50:39.326oai:www.bdtd.uerj.br:1/18344Tk9UQTogTElDRU7Dh0EgUkVERSBTSVJJVVMKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSAKZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSAKY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIApkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUVSSiBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIApBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE7Dg08gU0VKQSBFU1RBClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVbml2ZXJzaWRhZGUgZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-26T19:50:39Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false
dc.title.por.fl_str_mv Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
dc.title.alternative.eng.fl_str_mv Financial accounting indicators and predictability insolvency of distributors of electric power in Brazil
title Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
spellingShingle Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
Silva, Shirley Fernandes Pereira da
Electric Power Distributors
Insolvency
Accounting Indicators
Regression Model
Panel Data
Distribuidoras de Energia Elétrica
Insolvência
Indicadores contábeis
Modelo de Regressão Logística
Dados em painel
Serviços de eletricidade – Contabilidade – Brasil
Serviços de eletricidade – Falência – Brasil
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS
title_short Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
title_full Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
title_fullStr Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
title_full_unstemmed Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
title_sort Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil
author Silva, Shirley Fernandes Pereira da
author_facet Silva, Shirley Fernandes Pereira da
shirley.fernandes99@hotmail.com
author_role author
author2 shirley.fernandes99@hotmail.com
author2_role author
dc.contributor.advisor1.fl_str_mv Pessanha, José Francisco Moreira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3384481291163061
dc.contributor.referee1.fl_str_mv Duque, Andréa Paula Osório
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3034176309849515
dc.contributor.referee2.fl_str_mv Bonfim, Mariana Pereira
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6281056363283128
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7856074751007984
dc.contributor.author.fl_str_mv Silva, Shirley Fernandes Pereira da
shirley.fernandes99@hotmail.com
contributor_str_mv Pessanha, José Francisco Moreira
Duque, Andréa Paula Osório
Bonfim, Mariana Pereira
dc.subject.eng.fl_str_mv Electric Power Distributors
Insolvency
Accounting Indicators
Regression Model
Panel Data
topic Electric Power Distributors
Insolvency
Accounting Indicators
Regression Model
Panel Data
Distribuidoras de Energia Elétrica
Insolvência
Indicadores contábeis
Modelo de Regressão Logística
Dados em painel
Serviços de eletricidade – Contabilidade – Brasil
Serviços de eletricidade – Falência – Brasil
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS
dc.subject.por.fl_str_mv Distribuidoras de Energia Elétrica
Insolvência
Indicadores contábeis
Modelo de Regressão Logística
Dados em painel
Serviços de eletricidade – Contabilidade – Brasil
Serviços de eletricidade – Falência – Brasil
dc.subject.cnpq.fl_str_mv CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS
description This research aims to analyze the predictive capacity of financial accounting indicators in the probability of insolvency of electricity distributors. Through the analysis of the financial statements published on the website of the National Electric Energy Agency (ANEEL) of 63 distribution concessionaires, in the period 2011-2018. This research has the characteristic of being a bibliographic, descriptive and quantitative study. The collected data were submitted to the calculations of the indicators participating in the research, as established by accounting theory. Soon after, the data were submitted to an exploratory analysis, proceeding to a screening of the 18 indicators selected for the research (LC, LG, ENDAT, ENTOT, LOLB, LODF, EBTDF, EBITDA, EBTRL, ROA, ROE, MO, LLRL, DEFIN, INFIN, PL AND PNT), where all indicators were presented with statistically significant results. However, the indicators ENDF, ENTOT, ROE, EBTDF, had unexpected results from the perspective of accounting theory, and thus were discarded. In view of this, 14 indicators were considered for the continuity of the modeling. These 14 indicators were separated into insample (used to adjust the model) and outsample (used to assess the predictive capacity of adjusted models). Then, a search was made for all logistic regression models in which the regression coefficients were statistically significant at the level of 10%. For the selection of the best models, the AIC criterion, ROC curve, hit rate and Akaike Weights were used. Then, 6,479 models were fitted, but only 105 models presented statistically significant regression coefficients and with the expected signs, according to accounting theory, in the period 2011-2015. Thus, the indicators were identified: LLRL, DEFIN, LG, INFIN and PNT as relevant indicators to predict insolvency. To establish the robustness of the modeling, data from the 2011-2017 period were used, where 6,479 adjusted models were obtained, having 134 models with statistically significant regression coefficients and with the expected signs, according to accounting theory. During this period, the indicators were identified: DEFIN, INFIN, PNT, LG, LLRL, LODF, EBITDA, PL and ROA. Finally, after analyzing these two periods, 5 relevant indicators were identified to predict the insolvency of electricity distributors: DEFIN, INFIN, PNT, LG and LLRL.
publishDate 2020
dc.date.issued.fl_str_mv 2020-06-30
dc.date.accessioned.fl_str_mv 2022-09-08T13:46:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Shirley Fernandes Pereira da. Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil.. 2020. 91 f. Dissertação (Mestrado em Ciências Contábeis) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.
dc.identifier.uri.fl_str_mv http://www.bdtd.uerj.br/handle/1/18344
identifier_str_mv SILVA, Shirley Fernandes Pereira da. Indicadores contábeis financeiros e a previsibilidade de insolvência das distribuidoras de energia elétrica no Brasil.. 2020. 91 f. Dissertação (Mestrado em Ciências Contábeis) - Faculdade de Administração e Finanças, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2020.
url http://www.bdtd.uerj.br/handle/1/18344
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Contábeis
dc.publisher.initials.fl_str_mv UERJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Sociais::Faculdade de Administração e Finanças
publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UERJ
instname:Universidade do Estado do Rio de Janeiro (UERJ)
instacron:UERJ
instname_str Universidade do Estado do Rio de Janeiro (UERJ)
instacron_str UERJ
institution UERJ
reponame_str Biblioteca Digital de Teses e Dissertações da UERJ
collection Biblioteca Digital de Teses e Dissertações da UERJ
bitstream.url.fl_str_mv http://www.bdtd.uerj.br/bitstream/1/18344/2/Disserta%C3%A7%C3%A3o+-+Shirley+Fernandes+Pereira+da+Silva+-+2020+-+completa.pdf
http://www.bdtd.uerj.br/bitstream/1/18344/1/license.txt
bitstream.checksum.fl_str_mv d6ba16012e61ac6af40e3891d0557a8f
e5502652da718045d7fcd832b79fca29
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)
repository.mail.fl_str_mv bdtd.suporte@uerj.br
_version_ 1811728717409419264