Campos multivalentes e estados topológicos da matéria

Detalhes bibliográficos
Autor(a) principal: Braga, Pedro Rangel
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UERJ
Texto Completo: http://www.bdtd.uerj.br/handle/1/12813
Resumo: In this thesis we investigate topological aspects of states of matter as well as the role of disorder operator in field theory. First we introduce some aspects of, duality, condensation of defects and topology that will be our theoretical basis in order to describe topological insulators and topological superconductors. To understand the case of the topological insulators we review the Integer and Fractional Quantum Hall Effect which are the base for this new state of matter, and we show how the effective field theory is obtained. In the topological superconductors case we review the mechanism to obtain the effective field theory based on dimensional reduction of a Chern-Simons theory in (4+1)-dimensional space into a axion field theory in (3+1)-dimensional space. We then propose a new way of obtain the effective field theory considering multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent caused by particular vortex configurations thats don t possess electromagnetic flux. In the disorder operator we review the original Kadanoff and Ceva prescription based on the 2-dimensional Ising model as well as the generalization to the continuum field system. We them investigate the role of multivalued fields in the formulation of disorder operators and its connection with topological defects. In quantum field theory it is known that certain states describe collective modes of the fundamental fields and are created by operators that are often non-local, being defined over lines or over higher dimensional surfaces, and for this reason are sensitive to global, topological, properties of the system and depends on nonperturbative data. Such operators are generally known as disorder operators because its nonzero expectation values define a disordered vacuum associated with a condensate of the collective modes, also known sometimes as defects. We investigate the definition of these operators and its relation with the multivalued properties of the fundamental fields. We study some examples of scalar field theories and generalize the discussion to p-forms. By splitting the fields in their regular and singular parts we identify a ambiguity that can be explored, much like gauge symmetry, in order to define the relevant observables. We also use these ideas to re-obtain the vortex in the topological superconductors.
id UERJ_504dce3e639b4849207ccf664f0618a9
oai_identifier_str oai:www.bdtd.uerj.br:1/12813
network_acronym_str UERJ
network_name_str Biblioteca Digital de Teses e Dissertações da UERJ
repository_id_str 2903
spelling Guimarães, Marcelo Santoshttp://lattes.cnpq.br/5257334599729020Mintz, Bruno Werneckhttp://lattes.cnpq.br/3946180363494860Lemes, Vitor Emanuel Rodinohttp://lattes.cnpq.br/5873412251171218Oxman, Luis Estebanhttp://lattes.cnpq.br/9683857492443989Boschi Filho, Henriquehttp://lattes.cnpq.br/9621221741877717http://lattes.cnpq.br/3656870314820014Braga, Pedro Rangel2021-01-06T21:01:43Z2018-11-272018-10-11BRAGA, Pedro Rangel. Campos multivalentes e estados topológicos da matéria. 2018. 162 f. Tese (Doutorado em Física) - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2018.http://www.bdtd.uerj.br/handle/1/12813In this thesis we investigate topological aspects of states of matter as well as the role of disorder operator in field theory. First we introduce some aspects of, duality, condensation of defects and topology that will be our theoretical basis in order to describe topological insulators and topological superconductors. To understand the case of the topological insulators we review the Integer and Fractional Quantum Hall Effect which are the base for this new state of matter, and we show how the effective field theory is obtained. In the topological superconductors case we review the mechanism to obtain the effective field theory based on dimensional reduction of a Chern-Simons theory in (4+1)-dimensional space into a axion field theory in (3+1)-dimensional space. We then propose a new way of obtain the effective field theory considering multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent caused by particular vortex configurations thats don t possess electromagnetic flux. In the disorder operator we review the original Kadanoff and Ceva prescription based on the 2-dimensional Ising model as well as the generalization to the continuum field system. We them investigate the role of multivalued fields in the formulation of disorder operators and its connection with topological defects. In quantum field theory it is known that certain states describe collective modes of the fundamental fields and are created by operators that are often non-local, being defined over lines or over higher dimensional surfaces, and for this reason are sensitive to global, topological, properties of the system and depends on nonperturbative data. Such operators are generally known as disorder operators because its nonzero expectation values define a disordered vacuum associated with a condensate of the collective modes, also known sometimes as defects. We investigate the definition of these operators and its relation with the multivalued properties of the fundamental fields. We study some examples of scalar field theories and generalize the discussion to p-forms. By splitting the fields in their regular and singular parts we identify a ambiguity that can be explored, much like gauge symmetry, in order to define the relevant observables. We also use these ideas to re-obtain the vortex in the topological superconductors.Nesta tese investigamos os aspectos topológicos de estados da matéria, bem como operadores de desordem em sistemas de campos. Apresentamos uma revisão de aspectos de dualidade, condensação de defeitos e topologia que formarão a base para que possamos investigar como é feita a descrição de isolantes topológicos e supercondutores topológicos, bem como revisamos o conceito de ordenamento topológico. Para o caso dos isolantes topológicos revisaremos como é obtida a teoria efetiva que descreve este estado da matéria revisando também sistemas que serviram de base para esta construção, como sistemas do tipo Hall quântico. Para o caso dos supercondutores nós revisamos a construção feita a partir da redução dimensional de uma teoria de Chern-Simons em (4 + 1)-dimensões para uma teoria de áxion em (3 + 1)-dimensões. Propomos então uma teoria baseada na consideração de múltiplas superfícies de Fermi para o supercondutor. Para o caso de uma superfície nós reobtemos os resultados de que o supercondutor é melhor descrito como um estado topológico. Estudando o caso de mais de uma superfície, nós obtemos uma teoria efetiva que descreve um supercondutor topológico com simetria de reversão temporal. Estes resultados são obtidos através de um procedimento geral para construir teorias efetivas em baixas energias descrevendo estados do sistema eletromagnético interagindo com cargas e defeitos. O procedimento consiste em levar em conta cenários onde temos proliferação ou diluição destas cargas e defeitos e suas consequências para a descrição em baixas energias da resposta eletromagnética do sistema. Nós obtemos a principal característica deste tipo de sistema que é a não conservação da supercorrente ocasionada pela presença de vórtices que não carregam fluxo eletromagnético. Para o caso de operadores de desordem nós apresentamos a formulação original da obtenção destes operadores formulados a partir do modelo de Ising e revisamos a extensão destas ideias para sistemas contínuos. Investigamos então o papel de campos multivalentes na formulação destes operadores e a conexão com defeitos topológicos. Em teorias quânticas de campos é de conhecimento que certos estados descritos por modos coletivos de campos fundamentais são criados por operadores não-locais, sendo definidos sobre linhas ou superfícies de dimensões superiores e por esta razão são sensíveis a características globais e topológicas do sistema. Estes operadores são conhecidos como operadores de desordem, pois quando seu valor esperado de vácuo é não-nulo, este operador define um vácuo desordenado associado com a condensação destes modos coletivos. Estudamos então a definição destes operadores e sua relação com tornar os campos fundamentais em campos multivalentes. Aplicamos estas ideias em exemplos de campos escalares e sistemas de campos de calibre, bem como usamos a prescrição aqui desenvolvida para reobter os vórtices em um supercondutor topológico.Submitted by Boris Flegr (boris@uerj.br) on 2021-01-06T21:01:43Z No. of bitstreams: 1 Tese Pedro Rangel Braga.pdf: 1748458 bytes, checksum: f6f1c44190efffbf28a0bc562c01e2ea (MD5)Made available in DSpace on 2021-01-06T21:01:43Z (GMT). No. of bitstreams: 1 Tese Pedro Rangel Braga.pdf: 1748458 bytes, checksum: f6f1c44190efffbf28a0bc562c01e2ea (MD5) Previous issue date: 2018-10-11Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiroapplication/pdfporUniversidade do Estado do Rio de JaneiroPrograma de Pós-Graduação em FísicaUERJBRCentro de Tecnologia e Ciências::Instituto de Física Armando Dias TavaresSuperconductorsSuperconductivityTopologyQuantum field theorySupercondutoresSupercondutividadeTopologiaTeoria quântica de camposCNPQ::CIENCIAS EXATAS E DA TERRA::FISICACampos multivalentes e estados topológicos da matériaMultivalued fields and topological state of matterinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJORIGINALTese Pedro Rangel Braga.pdfapplication/pdf1748458http://www.bdtd.uerj.br/bitstream/1/12813/1/Tese+Pedro+Rangel+Braga.pdff6f1c44190efffbf28a0bc562c01e2eaMD511/128132024-02-27 15:40:16.077oai:www.bdtd.uerj.br:1/12813Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T18:40:16Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false
dc.title.por.fl_str_mv Campos multivalentes e estados topológicos da matéria
dc.title.alternative.eng.fl_str_mv Multivalued fields and topological state of matter
title Campos multivalentes e estados topológicos da matéria
spellingShingle Campos multivalentes e estados topológicos da matéria
Braga, Pedro Rangel
Superconductors
Superconductivity
Topology
Quantum field theory
Supercondutores
Supercondutividade
Topologia
Teoria quântica de campos
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Campos multivalentes e estados topológicos da matéria
title_full Campos multivalentes e estados topológicos da matéria
title_fullStr Campos multivalentes e estados topológicos da matéria
title_full_unstemmed Campos multivalentes e estados topológicos da matéria
title_sort Campos multivalentes e estados topológicos da matéria
author Braga, Pedro Rangel
author_facet Braga, Pedro Rangel
author_role author
dc.contributor.advisor1.fl_str_mv Guimarães, Marcelo Santos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5257334599729020
dc.contributor.referee1.fl_str_mv Mintz, Bruno Werneck
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3946180363494860
dc.contributor.referee2.fl_str_mv Lemes, Vitor Emanuel Rodino
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5873412251171218
dc.contributor.referee3.fl_str_mv Oxman, Luis Esteban
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/9683857492443989
dc.contributor.referee4.fl_str_mv Boschi Filho, Henrique
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/9621221741877717
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3656870314820014
dc.contributor.author.fl_str_mv Braga, Pedro Rangel
contributor_str_mv Guimarães, Marcelo Santos
Mintz, Bruno Werneck
Lemes, Vitor Emanuel Rodino
Oxman, Luis Esteban
Boschi Filho, Henrique
dc.subject.eng.fl_str_mv Superconductors
Superconductivity
Topology
Quantum field theory
topic Superconductors
Superconductivity
Topology
Quantum field theory
Supercondutores
Supercondutividade
Topologia
Teoria quântica de campos
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.por.fl_str_mv Supercondutores
Supercondutividade
Topologia
Teoria quântica de campos
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description In this thesis we investigate topological aspects of states of matter as well as the role of disorder operator in field theory. First we introduce some aspects of, duality, condensation of defects and topology that will be our theoretical basis in order to describe topological insulators and topological superconductors. To understand the case of the topological insulators we review the Integer and Fractional Quantum Hall Effect which are the base for this new state of matter, and we show how the effective field theory is obtained. In the topological superconductors case we review the mechanism to obtain the effective field theory based on dimensional reduction of a Chern-Simons theory in (4+1)-dimensional space into a axion field theory in (3+1)-dimensional space. We then propose a new way of obtain the effective field theory considering multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent caused by particular vortex configurations thats don t possess electromagnetic flux. In the disorder operator we review the original Kadanoff and Ceva prescription based on the 2-dimensional Ising model as well as the generalization to the continuum field system. We them investigate the role of multivalued fields in the formulation of disorder operators and its connection with topological defects. In quantum field theory it is known that certain states describe collective modes of the fundamental fields and are created by operators that are often non-local, being defined over lines or over higher dimensional surfaces, and for this reason are sensitive to global, topological, properties of the system and depends on nonperturbative data. Such operators are generally known as disorder operators because its nonzero expectation values define a disordered vacuum associated with a condensate of the collective modes, also known sometimes as defects. We investigate the definition of these operators and its relation with the multivalued properties of the fundamental fields. We study some examples of scalar field theories and generalize the discussion to p-forms. By splitting the fields in their regular and singular parts we identify a ambiguity that can be explored, much like gauge symmetry, in order to define the relevant observables. We also use these ideas to re-obtain the vortex in the topological superconductors.
publishDate 2018
dc.date.available.fl_str_mv 2018-11-27
dc.date.issued.fl_str_mv 2018-10-11
dc.date.accessioned.fl_str_mv 2021-01-06T21:01:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRAGA, Pedro Rangel. Campos multivalentes e estados topológicos da matéria. 2018. 162 f. Tese (Doutorado em Física) - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2018.
dc.identifier.uri.fl_str_mv http://www.bdtd.uerj.br/handle/1/12813
identifier_str_mv BRAGA, Pedro Rangel. Campos multivalentes e estados topológicos da matéria. 2018. 162 f. Tese (Doutorado em Física) - Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2018.
url http://www.bdtd.uerj.br/handle/1/12813
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física
dc.publisher.initials.fl_str_mv UERJ
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Centro de Tecnologia e Ciências::Instituto de Física Armando Dias Tavares
publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UERJ
instname:Universidade do Estado do Rio de Janeiro (UERJ)
instacron:UERJ
instname_str Universidade do Estado do Rio de Janeiro (UERJ)
instacron_str UERJ
institution UERJ
reponame_str Biblioteca Digital de Teses e Dissertações da UERJ
collection Biblioteca Digital de Teses e Dissertações da UERJ
bitstream.url.fl_str_mv http://www.bdtd.uerj.br/bitstream/1/12813/1/Tese+Pedro+Rangel+Braga.pdf
bitstream.checksum.fl_str_mv f6f1c44190efffbf28a0bc562c01e2ea
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)
repository.mail.fl_str_mv bdtd.suporte@uerj.br
_version_ 1811728668632809472