Obtenção de ácido acético a partir de etanol e água
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UERJ |
Texto Completo: | http://www.bdtd.uerj.br/handle/1/21498 |
Resumo: | Brazil’s ethanol production has been growing since the 1980s mainly because of its use in the fuels sector. However, due to the technology development in the electric car sector, it is possible that the ethanol demand would be affected. In this context, an alternative would be redirect part of the ethanol production to the chemical industry, since this alcohol is a platform molecule, i. e., several products could be generated from it, including the products called “drop in” which directly substitute petrochemicals. Among them, the acetic acid stands out due to its use as an important intermediate in polymer production. There are different processes of acetic acid production. However, the acetic acid synthesis through ethanol and water seems more interesting because, besides being a “greener” alternative, it doesn’t have the limitations presented in the process of the acetic acid synthesis involving ethanol and air, where the mixture ethanol/O2 is explosive in some concentrations. In this context, several catalytic systems were studied in the acetic acid synthesis through ethanol and water: Cr and Mn catalysts supported on commercial Cu/ZnO/Al2O3; Co3O4, ZnO and Al2O3 based catalysts; Cu, ZnO, ZrO2 and Al2O3 based catalysts, in addition to catalysts prepared from the aurichalcite, containing the same species. The catalysts were analyzed by XRF, N2 physisorption, XRD refined by the Rietveld method, TPR accompanied by XANES, N2O titration, XPS, CO2-TPD, NH3-TPD, H2O-TPD and ethanol-TPD. The Cr catalysts didn´t promote the acetic acid synthesis, whereas the catalysts containing Mn promoted the acetaldehyde oxidation, but favoring the acetone synthesis, just like the Co3O4, ZnO and Al2O3 based catalysts. The study of the Cu/ZnO/Al2O3 and Cu/ZrO2/Al2O3 catalysts showed that the reaction of the acetic acid synthesis through ethanol and water could occur via two different mechanisms depending on the catalysts physical-chemical properties. The oxidative mechanism follows these steps: firstly, the ethanol is dehydrogenated to acetaldehyde; then, acetaldehyde is oxidized by the lattice oxygen of ZnO, generating acetic acid; finally, the water molecule is dissociated at the ZnO oxygen vacancies, and the resultant “O” occupies the vacancy, completing the catalytic cycle. The associative mechanism can be described by the following steps: firstly, ethanol is dehydrogenated to acetaldehyde; later, this aldehyde reacts with an ethanol molecule generating ethyl acetate over pairs of acid and basic sites; finally, the esther is hydrolyzed generating acetic acid. The study of the catalysts prepared from the aurichalcite showed that the oxygen vacancies have fundamental role not only in the acetaldehyde oxidation step, following the oxidative mechanism, but also in the ethanol dehydrogenation reaction. Beyond that, the insertion of acid sites in these systems promote the acetaldehyde adsorption, facilitating its subsequent oxidation. |
id |
UERJ_93066ccee81c1bc6c835799f59cf4f20 |
---|---|
oai_identifier_str |
oai:www.bdtd.uerj.br:1/21498 |
network_acronym_str |
UERJ |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
repository_id_str |
2903 |
spelling |
Zotin, Fátima Maria Zanonhttps://orcid.org/0000-0001-5795-0849http://lattes.cnpq.br/2398224913573093Appel, Lúcia Gorenstinhttp://lattes.cnpq.br/0171183220606416Henriques, Cristiane Assumpçãohttps://orcid.org/0000-0003-4738-2344http://lattes.cnpq.br/8669668633454299Rabello, Carlos René Klotzhttp://lattes.cnpq.br/0876810882404934Gaspar, Alexandre Barroshttp://lattes.cnpq.br/1049735133222758Rossi, Liane Marciahttps://orcid.org/0000-0001-7679-0852http://lattes.cnpq.br/9937385143601337Avillez, Roberto Ribeiro dehttp://lattes.cnpq.br/4805585223096573http://lattes.cnpq.br/3219226864728301Gonzalez, Guilherme Goulartguilhermeggonzalez7@gmail.com2024-03-01T16:17:18Z2021-08-18GONZALEZ, Guilherme Goulart. Obtenção de ácido acético a partir de etanol e água. 2021. 106 f. Tese (Doutorado em Engenharia Química) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2021.http://www.bdtd.uerj.br/handle/1/21498Brazil’s ethanol production has been growing since the 1980s mainly because of its use in the fuels sector. However, due to the technology development in the electric car sector, it is possible that the ethanol demand would be affected. In this context, an alternative would be redirect part of the ethanol production to the chemical industry, since this alcohol is a platform molecule, i. e., several products could be generated from it, including the products called “drop in” which directly substitute petrochemicals. Among them, the acetic acid stands out due to its use as an important intermediate in polymer production. There are different processes of acetic acid production. However, the acetic acid synthesis through ethanol and water seems more interesting because, besides being a “greener” alternative, it doesn’t have the limitations presented in the process of the acetic acid synthesis involving ethanol and air, where the mixture ethanol/O2 is explosive in some concentrations. In this context, several catalytic systems were studied in the acetic acid synthesis through ethanol and water: Cr and Mn catalysts supported on commercial Cu/ZnO/Al2O3; Co3O4, ZnO and Al2O3 based catalysts; Cu, ZnO, ZrO2 and Al2O3 based catalysts, in addition to catalysts prepared from the aurichalcite, containing the same species. The catalysts were analyzed by XRF, N2 physisorption, XRD refined by the Rietveld method, TPR accompanied by XANES, N2O titration, XPS, CO2-TPD, NH3-TPD, H2O-TPD and ethanol-TPD. The Cr catalysts didn´t promote the acetic acid synthesis, whereas the catalysts containing Mn promoted the acetaldehyde oxidation, but favoring the acetone synthesis, just like the Co3O4, ZnO and Al2O3 based catalysts. The study of the Cu/ZnO/Al2O3 and Cu/ZrO2/Al2O3 catalysts showed that the reaction of the acetic acid synthesis through ethanol and water could occur via two different mechanisms depending on the catalysts physical-chemical properties. The oxidative mechanism follows these steps: firstly, the ethanol is dehydrogenated to acetaldehyde; then, acetaldehyde is oxidized by the lattice oxygen of ZnO, generating acetic acid; finally, the water molecule is dissociated at the ZnO oxygen vacancies, and the resultant “O” occupies the vacancy, completing the catalytic cycle. The associative mechanism can be described by the following steps: firstly, ethanol is dehydrogenated to acetaldehyde; later, this aldehyde reacts with an ethanol molecule generating ethyl acetate over pairs of acid and basic sites; finally, the esther is hydrolyzed generating acetic acid. The study of the catalysts prepared from the aurichalcite showed that the oxygen vacancies have fundamental role not only in the acetaldehyde oxidation step, following the oxidative mechanism, but also in the ethanol dehydrogenation reaction. Beyond that, the insertion of acid sites in these systems promote the acetaldehyde adsorption, facilitating its subsequent oxidation.A produção de etanol no Brasil vem crescendo desde a década de 1980 devido principalmente à sua utilização no setor de combustíveis. Porém, com o desenvolvimento da tecnologia no setor de carros elétricos, é possível que a demanda de etanol seja afetada. Neste contexto, uma alternativa seria escoar parte da produção de etanol para a Indústria Química, tendo em vista que este álcool é uma molécula plataforma, ou seja, diversos produtos podem ser gerados a partir dele, inclusive os produtos chamados de drop in que substituem diretamente compostos oriundos da petroquímica. Dentre eles, destaca-se o ácido acético, utilizado na indústria como importante intermediário na produção de polímeros. Existem diferentes processos de produção de ácido acético, porém a síntese desse ácido a partir de etanol e água vem se mostrando mais interessante pois, além de ser uma alternativa mais “verde”, não apresenta as limitações presentes no processo envolvendo etanol e ar, onde a mistura etanol/O2 é explosiva em determinadas concentrações. Dessa forma, diversos sistemas catalíticos foram estudados na síntese do ácido acético a partir de etanol e água. Foram eles: catalisadores de Cr e Mn suportados em Cu/ZnO/Al2O3 comercial; catalisadores à base de Co3O4, ZnO e Al2O3; catalisadores à base de Cu, ZnO, ZrO2 e Al2O3, além de catalisadores oriundos da auricalcita, contendo estas mesmas espécies. Foram realizadas análises de FRX, fisissorção de N2, DRX com dados refinados pelo método de Rietveld, TPR acompanhado pela técnica de XANES, titulação de N2O, XPS, TPD de CO2, TPD de NH3, TPD de H2O e TPD de etanol. Os catalisadores de Cr não promoveram a síntese do ácido acético, enquanto os catalisadores contendo Mn promoveram a oxidação do acetaldeído, mas favoreceram a síntese da acetona, assim como os catalisadores à base de Co3O4, ZnO e Al2O3. O estudo dos catalisadores de Cu/ZnO/Al2O3 e Cu/ZrO2/Al2O3 mostrou que a reação de síntese de ácido acético a partir de etanol e água pode ocorrer por dois mecanismos diferentes dependendo das propriedades físico-químicas dos catalisadores. O mecanismo oxidativo ocorre da seguinte forma: primeiramente, o etanol é desidrogenado a acetaldeído; a seguir, este aldeído é oxidado pelo oxigênio da rede do ZnO, gerando ácido acético; finalmente, a água é dissociada nas vacâncias de oxigênio reoxidando o ZnO e fechando o ciclo catalítico. Já o mecanismo associativo pode ser descrito pelas etapas a seguir: primeiramente, o etanol é desidrogenado a acetaldeído; depois, este aldeído reage com uma molécula de etanol gerando acetato de etila sobre pares de sítios ácidos e básicos; por fim, este éster é hidrolisado gerando ácido acético. O estudo dos catalisadores oriundos da auricalcita mostrou que as vacâncias de oxigênio são fundamentais não só na etapa de oxidação do acetaldeído, segundo o mecanismo oxidativo, mas também na desidrogenação do etanol. Além disso, a inserção de sítios ácidos nestes sistemas promove a adsorção do acetaldeído, facilitando sua posterior oxidação.Submitted by Diana Pires CTC/Q (di.coelhopires@gmail.com) on 2024-03-01T16:17:18Z No. of bitstreams: 1 Tese - Guilherme Goulart Gonzalez - 2021 - Completa.pdf: 4210375 bytes, checksum: 2aa5cbdebd92decf34169f504ed234d7 (MD5)Made available in DSpace on 2024-03-01T16:17:18Z (GMT). No. of bitstreams: 1 Tese - Guilherme Goulart Gonzalez - 2021 - Completa.pdf: 4210375 bytes, checksum: 2aa5cbdebd92decf34169f504ed234d7 (MD5) Previous issue date: 2021-08-18Petróleo Brasileiro S.A – Petrobrasapplication/pdfporUniversidade do Estado do Rio de JaneiroPrograma de Pós-Graduação em Engenharia QuímicaUERJBrasilCentro de Tecnologia e Ciências::Instituto de QuímicaEtanolÁcido acéticoVacâncias de oxigênioAuricalcitaEthanolAcetic acidOxygen vacanciesAurichalciteENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAObtenção de ácido acético a partir de etanol e águaAcetic acid obtainment through ethanol and waterinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJLICENSElicense.txtlicense.txttext/plain; charset=utf-82011http://www.bdtd.uerj.br/bitstream/1/21498/3/license.txtba23dde015e31ff1802d858071d990cdMD53ORIGINALTese - Guilherme Goulart Gonzalez - 2021 - Completa.pdfTese - Guilherme Goulart Gonzalez - 2021 - Completa.pdfapplication/pdf4210375http://www.bdtd.uerj.br/bitstream/1/21498/2/Tese+-+Guilherme+Goulart+Gonzalez+-+2021+-+Completa.pdf2aa5cbdebd92decf34169f504ed234d7MD521/214982024-03-01 13:17:18.506oai:www.bdtd.uerj.br:1/21498Tk9UQTogTElDRU7Dh0EgUkVERSBTSVJJVVMKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgZS9vdSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcykgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgZG8gRXN0YWRvIGRvIFJpbyBkZSAKSmFuZWlybyAoVUVSSikgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBzdWEgdGVzZSBvdSAKZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBnbG9iYWxtZW50ZSwgdGFudG8gZW0gZm9ybWF0byBpbXByZXNzbyBxdWFudG8gZWxldHLDtG5pY28sIGFicmFuZ2VuZG8gbWVpb3MgY29tbyDDoXVkaW8gCm91IHbDrWRlby4KCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSwgdm9jw6ogcmVjb25oZWNlIHF1ZSBhIFVFUkogcG9kZSwgc2VtIG1vZGlmaWNhciBvIGNvbnRlw7pkbywgdHJhbnNwb3Igc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpBbMOpbSBkaXNzbywgdm9jw6ogY29uY29yZGEgcXVlIGEgVUVSSiBwb2RlIG1hbnRlciBtw7psdGlwbGFzIGPDs3BpYXMgZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgCmJhY2t1cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsLCBlIHF1ZSBkZXTDqW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBkZXNjcml0b3MgbmVzdGEgbGljZW7Dp2EuIApBZmlybWEgdGFtYsOpbSBxdWUsIGF0w6kgb25kZSDDqSBkZSBzZXUgY29uaGVjaW1lbnRvLCBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28gdmlvbGEgZGlyZWl0b3MgYXV0b3JhaXMgZGUgCnRlcmNlaXJvcy4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIGF1dG9yYWlzIG7Do28gc8OjbyBkZSBzdWEgdGl0dWxhcmlkYWRlLCB2b2PDqiBkZWNsYXJhIHRlciBvYnRpZG8KcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVFUkogb3MgZGlyZWl0b3MgZXN0YWJlbGVjaWRvcyBuZXN0YSBsaWNlbsOnYS4gClF1YWxxdWVyIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IGNvbnRlw7pkbyBkYSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIGRlcG9zaXRhZGEuCgpTZSBhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyByZXN1bHRhciBkZSBwYXRyb2PDrW5pbyBvdSBhcG9pbyBkZSB1bWEgYWfDqm5jaWEgZGUgZm9tZW50byBvdSBvdXRybyBvcmdhbmlzbW8gcXVlIG7Do28gc2VqYSBhIAp1bml2ZXJzaWRhZGUsIHZvY8OqIGRlY2xhcmEgdGVyIHJlc3BlaXRhZG8gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgcmV2aXPDo28sIGFzc2ltIGNvbW8gb3V0cmFzIG9icmlnYcOnw7VlcyBlc3RhYmVsZWNpZGFzIHBvciAKY29udHJhdG8gb3UgYWNvcmRvLgoKQSBVRVJKIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gbm9tZSBkbyBhdXRvciBjb21vIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgCnNlbSByZWFsaXphciBxdWFpc3F1ZXIgYWx0ZXJhw6fDtWVzIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-03-01T16:17:18Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false |
dc.title.por.fl_str_mv |
Obtenção de ácido acético a partir de etanol e água |
dc.title.alternative.eng.fl_str_mv |
Acetic acid obtainment through ethanol and water |
title |
Obtenção de ácido acético a partir de etanol e água |
spellingShingle |
Obtenção de ácido acético a partir de etanol e água Gonzalez, Guilherme Goulart Etanol Ácido acético Vacâncias de oxigênio Auricalcita Ethanol Acetic acid Oxygen vacancies Aurichalcite ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
title_short |
Obtenção de ácido acético a partir de etanol e água |
title_full |
Obtenção de ácido acético a partir de etanol e água |
title_fullStr |
Obtenção de ácido acético a partir de etanol e água |
title_full_unstemmed |
Obtenção de ácido acético a partir de etanol e água |
title_sort |
Obtenção de ácido acético a partir de etanol e água |
author |
Gonzalez, Guilherme Goulart |
author_facet |
Gonzalez, Guilherme Goulart guilhermeggonzalez7@gmail.com |
author_role |
author |
author2 |
guilhermeggonzalez7@gmail.com |
author2_role |
author |
dc.contributor.advisor1.fl_str_mv |
Zotin, Fátima Maria Zanon |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/0000-0001-5795-0849 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2398224913573093 |
dc.contributor.advisor2.fl_str_mv |
Appel, Lúcia Gorenstin |
dc.contributor.advisor2Lattes.fl_str_mv |
http://lattes.cnpq.br/0171183220606416 |
dc.contributor.referee1.fl_str_mv |
Henriques, Cristiane Assumpção |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0003-4738-2344 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8669668633454299 |
dc.contributor.referee2.fl_str_mv |
Rabello, Carlos René Klotz |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/0876810882404934 |
dc.contributor.referee3.fl_str_mv |
Gaspar, Alexandre Barros |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/1049735133222758 |
dc.contributor.referee4.fl_str_mv |
Rossi, Liane Marcia |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0001-7679-0852 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/9937385143601337 |
dc.contributor.referee5.fl_str_mv |
Avillez, Roberto Ribeiro de |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/4805585223096573 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3219226864728301 |
dc.contributor.author.fl_str_mv |
Gonzalez, Guilherme Goulart guilhermeggonzalez7@gmail.com |
contributor_str_mv |
Zotin, Fátima Maria Zanon Appel, Lúcia Gorenstin Henriques, Cristiane Assumpção Rabello, Carlos René Klotz Gaspar, Alexandre Barros Rossi, Liane Marcia Avillez, Roberto Ribeiro de |
dc.subject.por.fl_str_mv |
Etanol Ácido acético Vacâncias de oxigênio Auricalcita |
topic |
Etanol Ácido acético Vacâncias de oxigênio Auricalcita Ethanol Acetic acid Oxygen vacancies Aurichalcite ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Ethanol Acetic acid Oxygen vacancies Aurichalcite |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
description |
Brazil’s ethanol production has been growing since the 1980s mainly because of its use in the fuels sector. However, due to the technology development in the electric car sector, it is possible that the ethanol demand would be affected. In this context, an alternative would be redirect part of the ethanol production to the chemical industry, since this alcohol is a platform molecule, i. e., several products could be generated from it, including the products called “drop in” which directly substitute petrochemicals. Among them, the acetic acid stands out due to its use as an important intermediate in polymer production. There are different processes of acetic acid production. However, the acetic acid synthesis through ethanol and water seems more interesting because, besides being a “greener” alternative, it doesn’t have the limitations presented in the process of the acetic acid synthesis involving ethanol and air, where the mixture ethanol/O2 is explosive in some concentrations. In this context, several catalytic systems were studied in the acetic acid synthesis through ethanol and water: Cr and Mn catalysts supported on commercial Cu/ZnO/Al2O3; Co3O4, ZnO and Al2O3 based catalysts; Cu, ZnO, ZrO2 and Al2O3 based catalysts, in addition to catalysts prepared from the aurichalcite, containing the same species. The catalysts were analyzed by XRF, N2 physisorption, XRD refined by the Rietveld method, TPR accompanied by XANES, N2O titration, XPS, CO2-TPD, NH3-TPD, H2O-TPD and ethanol-TPD. The Cr catalysts didn´t promote the acetic acid synthesis, whereas the catalysts containing Mn promoted the acetaldehyde oxidation, but favoring the acetone synthesis, just like the Co3O4, ZnO and Al2O3 based catalysts. The study of the Cu/ZnO/Al2O3 and Cu/ZrO2/Al2O3 catalysts showed that the reaction of the acetic acid synthesis through ethanol and water could occur via two different mechanisms depending on the catalysts physical-chemical properties. The oxidative mechanism follows these steps: firstly, the ethanol is dehydrogenated to acetaldehyde; then, acetaldehyde is oxidized by the lattice oxygen of ZnO, generating acetic acid; finally, the water molecule is dissociated at the ZnO oxygen vacancies, and the resultant “O” occupies the vacancy, completing the catalytic cycle. The associative mechanism can be described by the following steps: firstly, ethanol is dehydrogenated to acetaldehyde; later, this aldehyde reacts with an ethanol molecule generating ethyl acetate over pairs of acid and basic sites; finally, the esther is hydrolyzed generating acetic acid. The study of the catalysts prepared from the aurichalcite showed that the oxygen vacancies have fundamental role not only in the acetaldehyde oxidation step, following the oxidative mechanism, but also in the ethanol dehydrogenation reaction. Beyond that, the insertion of acid sites in these systems promote the acetaldehyde adsorption, facilitating its subsequent oxidation. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-08-18 |
dc.date.accessioned.fl_str_mv |
2024-03-01T16:17:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GONZALEZ, Guilherme Goulart. Obtenção de ácido acético a partir de etanol e água. 2021. 106 f. Tese (Doutorado em Engenharia Química) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2021. |
dc.identifier.uri.fl_str_mv |
http://www.bdtd.uerj.br/handle/1/21498 |
identifier_str_mv |
GONZALEZ, Guilherme Goulart. Obtenção de ácido acético a partir de etanol e água. 2021. 106 f. Tese (Doutorado em Engenharia Química) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2021. |
url |
http://www.bdtd.uerj.br/handle/1/21498 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UERJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Tecnologia e Ciências::Instituto de Química |
publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UERJ instname:Universidade do Estado do Rio de Janeiro (UERJ) instacron:UERJ |
instname_str |
Universidade do Estado do Rio de Janeiro (UERJ) |
instacron_str |
UERJ |
institution |
UERJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
collection |
Biblioteca Digital de Teses e Dissertações da UERJ |
bitstream.url.fl_str_mv |
http://www.bdtd.uerj.br/bitstream/1/21498/3/license.txt http://www.bdtd.uerj.br/bitstream/1/21498/2/Tese+-+Guilherme+Goulart+Gonzalez+-+2021+-+Completa.pdf |
bitstream.checksum.fl_str_mv |
ba23dde015e31ff1802d858071d990cd 2aa5cbdebd92decf34169f504ed234d7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ) |
repository.mail.fl_str_mv |
bdtd.suporte@uerj.br |
_version_ |
1811728746070147072 |