Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame

Detalhes bibliográficos
Autor(a) principal: Galindo, Jalber Dinelli Luna
Data de Publicação: 2022
Outros Autores: jalberdinelli@hotmail.com
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UERJ
Texto Completo: http://www.bdtd.uerj.br/handle/1/19360
Resumo: Open-circuit or short-circuit faults, as well as in discrete parameters are the most used models in simulation methods before testing. Since the response of an analog circuit to an input signal is continuous, failures in any particular circuit component may not characterize all possible component failures. There are three important features in failure diagnostic of analog circuits: identifying faulty components, determining faulty element values, and circuit tolerance constraints. To solve this problem, two methodologies are proposed and implemented, which are based on optimization using swarm intelligence, for the diagnosis of failures: Particle Swarm Optimization (PSO); and bat behavior inspired optimization, termed Bat Algorithm (BA). The non-linear equations of the circuit under test are used to calculate its parameters. The objective is to identify the circuit componente that has the potential to present a failure by comparing the responses measured the real circuit and that obtained by the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed implementations: the Tow-Thomas Biquad filter (circuit 1) and the ButterWorth filter (circuit 2). The proposed methodologies are able to identify or, at least, reduce the number of possibly failing components. The four main performance metrics used are extracted: accuracy, precision, sensitivity and specificity. The BA technique offers a better performance, using the combination of the maximum accessible nodes of the circuit under test, with the considered metric values 95.84%, 81.45%, 82.16% and 97.66%, respectively for circuit 1. For circuit 2, the obtained metric values are 95.13%, 74.87%, 73.30% and 97.42%, respectively. The BA technique is more efficient regarding the execution time. For circuit 1, there was an average reduction of 7.95% of the time when compared to the average time of the PSO for the circuit without failures, and of 8.12% for the cases with failure. For circuit 2, there was an average reduction of 12.2% of the time when compared to the average time of the PSO for the circuit without failures, and of 11.2% for the cases with failure.
id UERJ_c47a41e6d9b7ec554752e68233374ec4
oai_identifier_str oai:www.bdtd.uerj.br:1/19360
network_acronym_str UERJ
network_name_str Biblioteca Digital de Teses e Dissertações da UERJ
repository_id_str 2903
spelling Nedjah, Nadiahttp://lattes.cnpq.br/5417946704251656Mourelle, Luiza de Macedohttp://lattes.cnpq.br/4189604454431782Oliveira, Fernanda Duarte Vilela Reis dehttp://lattes.cnpq.br/9295049424013721Carvalho, Paulo Victor Rodrigues dehttp://lattes.cnpq.br/8486882484125774http://lattes.cnpq.br/3955249533072388Galindo, Jalber Dinelli Lunajalberdinelli@hotmail.com2023-04-11T16:01:59Z2022-12-15GALINDO, Jalber Dinelli Luna. Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame. 2022. 251 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.http://www.bdtd.uerj.br/handle/1/19360Open-circuit or short-circuit faults, as well as in discrete parameters are the most used models in simulation methods before testing. Since the response of an analog circuit to an input signal is continuous, failures in any particular circuit component may not characterize all possible component failures. There are three important features in failure diagnostic of analog circuits: identifying faulty components, determining faulty element values, and circuit tolerance constraints. To solve this problem, two methodologies are proposed and implemented, which are based on optimization using swarm intelligence, for the diagnosis of failures: Particle Swarm Optimization (PSO); and bat behavior inspired optimization, termed Bat Algorithm (BA). The non-linear equations of the circuit under test are used to calculate its parameters. The objective is to identify the circuit componente that has the potential to present a failure by comparing the responses measured the real circuit and that obtained by the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed implementations: the Tow-Thomas Biquad filter (circuit 1) and the ButterWorth filter (circuit 2). The proposed methodologies are able to identify or, at least, reduce the number of possibly failing components. The four main performance metrics used are extracted: accuracy, precision, sensitivity and specificity. The BA technique offers a better performance, using the combination of the maximum accessible nodes of the circuit under test, with the considered metric values 95.84%, 81.45%, 82.16% and 97.66%, respectively for circuit 1. For circuit 2, the obtained metric values are 95.13%, 74.87%, 73.30% and 97.42%, respectively. The BA technique is more efficient regarding the execution time. For circuit 1, there was an average reduction of 7.95% of the time when compared to the average time of the PSO for the circuit without failures, and of 8.12% for the cases with failure. For circuit 2, there was an average reduction of 12.2% of the time when compared to the average time of the PSO for the circuit without failures, and of 11.2% for the cases with failure.Falhas de circuito aberto ou curto-circuito, bem como em parâmetros discretos são os modelos mais utilizados no método de simulação antes do teste. Como a resposta de um circuito analógico a um sinal de entrada é contínua, falhas em qualquer elemento específico do circuito podem não caracterizar todas as possíveis falhas de componentes. Existem três recursos importantes no diagnóstico de falhas em circuitos analógicos: identificação de componentes defeituosos, determinação de valores de elementos defeituosos e restrições de tolerância do circuito. Para resolver este problema, foram propostas e implementadas duas metodologias, que são baseadas em otimização utilizando inteligência de enxame para o diagnóstico de falhas: otimização por enxame de partículas (Particle Swarm Optimization – PSO); e otimização inspirada no comportamento dos morcegos (Bat Algorithm – BA). As equações não lineares do circuito em teste são usadas para calcular seus parâmetros. O objetivo é identificar o componente do circuito que tem potencial para apresentar a falha, comparando as respostas obtidas do circuito real e a resposta obtida pelo processo de otimização. Foram utilizados dois circuitos como estudos de caso para avaliar o desempenho das metodologias propostas: o filtro Biquad de Tow-Thomas (circuito 1) e o filtro de ButterWorth (circuito 2). As metodologias propostas foram capazes de identificar ou, pelo menos, reduzir a quantidade de possíveis componentes com falhas. Foram extraídas as quatro principais métricas de desempenho: a acurácia, a precisão, a sensibilidade e a especificidade. A técnica do BA teve um melhor desempenho, utilizando a combinação máxima dos nós acessíveis do circuito em teste, com valor das métricas consideradas 95,84%, 81,45%, 82,16% e 97,66%, respectivamente para o circuito 1. Para o circuito 2, obteve métricas de 95,13%, 74,87%, 73,30% e 97,42%, respectivamente. A técnica do BA também foi melhor em relação ao tempo de execução. Para o circuito 1, houve uma redução média de 7,95% do tempo em relação ao tempo médio do PSO para o circuito sem falhas e de 8,12% para os casos com falha. Para o circuito 2, houve uma redução média de 12,2% do tempo em relação ao tempo médio do PSO para o circuito sem falhas e de 11,2% para os casos com falha.Submitted by Julia CTC/B (julia.vieira@uerj.br) on 2023-04-11T16:01:59Z No. of bitstreams: 1 Dissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdf: 1815228 bytes, checksum: 85fd96918ac497e8638f2a5b0005b441 (MD5)Made available in DSpace on 2023-04-11T16:01:59Z (GMT). No. of bitstreams: 1 Dissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdf: 1815228 bytes, checksum: 85fd96918ac497e8638f2a5b0005b441 (MD5) Previous issue date: 2022-12-15application/pdfporUniversidade do Estado do Rio de JaneiroPrograma de Pós-Graduação em Engenharia EletrônicaUERJBrasilCentro de Tecnologia e Ciências::Faculdade de EngenhariaElectronic engineeringComputer system failuresExpert systems (Computer)Linear integrated circuitsCollective intelligenceEngenharia eletrônicaFalhas de sistemas de computaçãoSistemas especialistas (Computação)Circuitos integrados linearesInteligência coletivaENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOSDiagnóstico de falhas em circuitos analógicos utilizando inteligência de enxameFault diagnosis in analogic circuits using swarm intelligenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJORIGINALDissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdfDissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdfapplication/pdf1815228http://www.bdtd.uerj.br/bitstream/1/19360/2/Disserta%C3%A7%C3%A3o+-+Jalber+Dinelli+Luna+Galindo+-+2022+-+Completo.pdf85fd96918ac497e8638f2a5b0005b441MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82123http://www.bdtd.uerj.br/bitstream/1/19360/1/license.txte5502652da718045d7fcd832b79fca29MD511/193602024-02-27 15:16:53.118oai:www.bdtd.uerj.br:1/19360Tk9UQTogTElDRU7Dh0EgUkVERSBTSVJJVVMKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSAKZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSAKY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIApkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUVSSiBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIApBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE7Dg08gU0VKQSBFU1RBClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVbml2ZXJzaWRhZGUgZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T18:16:53Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false
dc.title.por.fl_str_mv Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
dc.title.alternative.eng.fl_str_mv Fault diagnosis in analogic circuits using swarm intelligence
title Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
spellingShingle Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
Galindo, Jalber Dinelli Luna
Electronic engineering
Computer system failures
Expert systems (Computer)
Linear integrated circuits
Collective intelligence
Engenharia eletrônica
Falhas de sistemas de computação
Sistemas especialistas (Computação)
Circuitos integrados lineares
Inteligência coletiva
ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS
title_short Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
title_full Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
title_fullStr Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
title_full_unstemmed Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
title_sort Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
author Galindo, Jalber Dinelli Luna
author_facet Galindo, Jalber Dinelli Luna
jalberdinelli@hotmail.com
author_role author
author2 jalberdinelli@hotmail.com
author2_role author
dc.contributor.advisor1.fl_str_mv Nedjah, Nadia
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5417946704251656
dc.contributor.advisor2.fl_str_mv Mourelle, Luiza de Macedo
dc.contributor.advisor2Lattes.fl_str_mv http://lattes.cnpq.br/4189604454431782
dc.contributor.referee1.fl_str_mv Oliveira, Fernanda Duarte Vilela Reis de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9295049424013721
dc.contributor.referee2.fl_str_mv Carvalho, Paulo Victor Rodrigues de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8486882484125774
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3955249533072388
dc.contributor.author.fl_str_mv Galindo, Jalber Dinelli Luna
jalberdinelli@hotmail.com
contributor_str_mv Nedjah, Nadia
Mourelle, Luiza de Macedo
Oliveira, Fernanda Duarte Vilela Reis de
Carvalho, Paulo Victor Rodrigues de
dc.subject.eng.fl_str_mv Electronic engineering
Computer system failures
Expert systems (Computer)
Linear integrated circuits
Collective intelligence
topic Electronic engineering
Computer system failures
Expert systems (Computer)
Linear integrated circuits
Collective intelligence
Engenharia eletrônica
Falhas de sistemas de computação
Sistemas especialistas (Computação)
Circuitos integrados lineares
Inteligência coletiva
ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS
dc.subject.por.fl_str_mv Engenharia eletrônica
Falhas de sistemas de computação
Sistemas especialistas (Computação)
Circuitos integrados lineares
Inteligência coletiva
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS
description Open-circuit or short-circuit faults, as well as in discrete parameters are the most used models in simulation methods before testing. Since the response of an analog circuit to an input signal is continuous, failures in any particular circuit component may not characterize all possible component failures. There are three important features in failure diagnostic of analog circuits: identifying faulty components, determining faulty element values, and circuit tolerance constraints. To solve this problem, two methodologies are proposed and implemented, which are based on optimization using swarm intelligence, for the diagnosis of failures: Particle Swarm Optimization (PSO); and bat behavior inspired optimization, termed Bat Algorithm (BA). The non-linear equations of the circuit under test are used to calculate its parameters. The objective is to identify the circuit componente that has the potential to present a failure by comparing the responses measured the real circuit and that obtained by the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed implementations: the Tow-Thomas Biquad filter (circuit 1) and the ButterWorth filter (circuit 2). The proposed methodologies are able to identify or, at least, reduce the number of possibly failing components. The four main performance metrics used are extracted: accuracy, precision, sensitivity and specificity. The BA technique offers a better performance, using the combination of the maximum accessible nodes of the circuit under test, with the considered metric values 95.84%, 81.45%, 82.16% and 97.66%, respectively for circuit 1. For circuit 2, the obtained metric values are 95.13%, 74.87%, 73.30% and 97.42%, respectively. The BA technique is more efficient regarding the execution time. For circuit 1, there was an average reduction of 7.95% of the time when compared to the average time of the PSO for the circuit without failures, and of 8.12% for the cases with failure. For circuit 2, there was an average reduction of 12.2% of the time when compared to the average time of the PSO for the circuit without failures, and of 11.2% for the cases with failure.
publishDate 2022
dc.date.issued.fl_str_mv 2022-12-15
dc.date.accessioned.fl_str_mv 2023-04-11T16:01:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GALINDO, Jalber Dinelli Luna. Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame. 2022. 251 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.
dc.identifier.uri.fl_str_mv http://www.bdtd.uerj.br/handle/1/19360
identifier_str_mv GALINDO, Jalber Dinelli Luna. Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame. 2022. 251 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.
url http://www.bdtd.uerj.br/handle/1/19360
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Eletrônica
dc.publisher.initials.fl_str_mv UERJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Tecnologia e Ciências::Faculdade de Engenharia
publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UERJ
instname:Universidade do Estado do Rio de Janeiro (UERJ)
instacron:UERJ
instname_str Universidade do Estado do Rio de Janeiro (UERJ)
instacron_str UERJ
institution UERJ
reponame_str Biblioteca Digital de Teses e Dissertações da UERJ
collection Biblioteca Digital de Teses e Dissertações da UERJ
bitstream.url.fl_str_mv http://www.bdtd.uerj.br/bitstream/1/19360/2/Disserta%C3%A7%C3%A3o+-+Jalber+Dinelli+Luna+Galindo+-+2022+-+Completo.pdf
http://www.bdtd.uerj.br/bitstream/1/19360/1/license.txt
bitstream.checksum.fl_str_mv 85fd96918ac497e8638f2a5b0005b441
e5502652da718045d7fcd832b79fca29
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)
repository.mail.fl_str_mv bdtd.suporte@uerj.br
_version_ 1811728727993745408