Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UERJ |
Texto Completo: | http://www.bdtd.uerj.br/handle/1/19360 |
Resumo: | Open-circuit or short-circuit faults, as well as in discrete parameters are the most used models in simulation methods before testing. Since the response of an analog circuit to an input signal is continuous, failures in any particular circuit component may not characterize all possible component failures. There are three important features in failure diagnostic of analog circuits: identifying faulty components, determining faulty element values, and circuit tolerance constraints. To solve this problem, two methodologies are proposed and implemented, which are based on optimization using swarm intelligence, for the diagnosis of failures: Particle Swarm Optimization (PSO); and bat behavior inspired optimization, termed Bat Algorithm (BA). The non-linear equations of the circuit under test are used to calculate its parameters. The objective is to identify the circuit componente that has the potential to present a failure by comparing the responses measured the real circuit and that obtained by the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed implementations: the Tow-Thomas Biquad filter (circuit 1) and the ButterWorth filter (circuit 2). The proposed methodologies are able to identify or, at least, reduce the number of possibly failing components. The four main performance metrics used are extracted: accuracy, precision, sensitivity and specificity. The BA technique offers a better performance, using the combination of the maximum accessible nodes of the circuit under test, with the considered metric values 95.84%, 81.45%, 82.16% and 97.66%, respectively for circuit 1. For circuit 2, the obtained metric values are 95.13%, 74.87%, 73.30% and 97.42%, respectively. The BA technique is more efficient regarding the execution time. For circuit 1, there was an average reduction of 7.95% of the time when compared to the average time of the PSO for the circuit without failures, and of 8.12% for the cases with failure. For circuit 2, there was an average reduction of 12.2% of the time when compared to the average time of the PSO for the circuit without failures, and of 11.2% for the cases with failure. |
id |
UERJ_c47a41e6d9b7ec554752e68233374ec4 |
---|---|
oai_identifier_str |
oai:www.bdtd.uerj.br:1/19360 |
network_acronym_str |
UERJ |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
repository_id_str |
2903 |
spelling |
Nedjah, Nadiahttp://lattes.cnpq.br/5417946704251656Mourelle, Luiza de Macedohttp://lattes.cnpq.br/4189604454431782Oliveira, Fernanda Duarte Vilela Reis dehttp://lattes.cnpq.br/9295049424013721Carvalho, Paulo Victor Rodrigues dehttp://lattes.cnpq.br/8486882484125774http://lattes.cnpq.br/3955249533072388Galindo, Jalber Dinelli Lunajalberdinelli@hotmail.com2023-04-11T16:01:59Z2022-12-15GALINDO, Jalber Dinelli Luna. Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame. 2022. 251 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.http://www.bdtd.uerj.br/handle/1/19360Open-circuit or short-circuit faults, as well as in discrete parameters are the most used models in simulation methods before testing. Since the response of an analog circuit to an input signal is continuous, failures in any particular circuit component may not characterize all possible component failures. There are three important features in failure diagnostic of analog circuits: identifying faulty components, determining faulty element values, and circuit tolerance constraints. To solve this problem, two methodologies are proposed and implemented, which are based on optimization using swarm intelligence, for the diagnosis of failures: Particle Swarm Optimization (PSO); and bat behavior inspired optimization, termed Bat Algorithm (BA). The non-linear equations of the circuit under test are used to calculate its parameters. The objective is to identify the circuit componente that has the potential to present a failure by comparing the responses measured the real circuit and that obtained by the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed implementations: the Tow-Thomas Biquad filter (circuit 1) and the ButterWorth filter (circuit 2). The proposed methodologies are able to identify or, at least, reduce the number of possibly failing components. The four main performance metrics used are extracted: accuracy, precision, sensitivity and specificity. The BA technique offers a better performance, using the combination of the maximum accessible nodes of the circuit under test, with the considered metric values 95.84%, 81.45%, 82.16% and 97.66%, respectively for circuit 1. For circuit 2, the obtained metric values are 95.13%, 74.87%, 73.30% and 97.42%, respectively. The BA technique is more efficient regarding the execution time. For circuit 1, there was an average reduction of 7.95% of the time when compared to the average time of the PSO for the circuit without failures, and of 8.12% for the cases with failure. For circuit 2, there was an average reduction of 12.2% of the time when compared to the average time of the PSO for the circuit without failures, and of 11.2% for the cases with failure.Falhas de circuito aberto ou curto-circuito, bem como em parâmetros discretos são os modelos mais utilizados no método de simulação antes do teste. Como a resposta de um circuito analógico a um sinal de entrada é contínua, falhas em qualquer elemento específico do circuito podem não caracterizar todas as possíveis falhas de componentes. Existem três recursos importantes no diagnóstico de falhas em circuitos analógicos: identificação de componentes defeituosos, determinação de valores de elementos defeituosos e restrições de tolerância do circuito. Para resolver este problema, foram propostas e implementadas duas metodologias, que são baseadas em otimização utilizando inteligência de enxame para o diagnóstico de falhas: otimização por enxame de partículas (Particle Swarm Optimization – PSO); e otimização inspirada no comportamento dos morcegos (Bat Algorithm – BA). As equações não lineares do circuito em teste são usadas para calcular seus parâmetros. O objetivo é identificar o componente do circuito que tem potencial para apresentar a falha, comparando as respostas obtidas do circuito real e a resposta obtida pelo processo de otimização. Foram utilizados dois circuitos como estudos de caso para avaliar o desempenho das metodologias propostas: o filtro Biquad de Tow-Thomas (circuito 1) e o filtro de ButterWorth (circuito 2). As metodologias propostas foram capazes de identificar ou, pelo menos, reduzir a quantidade de possíveis componentes com falhas. Foram extraídas as quatro principais métricas de desempenho: a acurácia, a precisão, a sensibilidade e a especificidade. A técnica do BA teve um melhor desempenho, utilizando a combinação máxima dos nós acessíveis do circuito em teste, com valor das métricas consideradas 95,84%, 81,45%, 82,16% e 97,66%, respectivamente para o circuito 1. Para o circuito 2, obteve métricas de 95,13%, 74,87%, 73,30% e 97,42%, respectivamente. A técnica do BA também foi melhor em relação ao tempo de execução. Para o circuito 1, houve uma redução média de 7,95% do tempo em relação ao tempo médio do PSO para o circuito sem falhas e de 8,12% para os casos com falha. Para o circuito 2, houve uma redução média de 12,2% do tempo em relação ao tempo médio do PSO para o circuito sem falhas e de 11,2% para os casos com falha.Submitted by Julia CTC/B (julia.vieira@uerj.br) on 2023-04-11T16:01:59Z No. of bitstreams: 1 Dissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdf: 1815228 bytes, checksum: 85fd96918ac497e8638f2a5b0005b441 (MD5)Made available in DSpace on 2023-04-11T16:01:59Z (GMT). No. of bitstreams: 1 Dissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdf: 1815228 bytes, checksum: 85fd96918ac497e8638f2a5b0005b441 (MD5) Previous issue date: 2022-12-15application/pdfporUniversidade do Estado do Rio de JaneiroPrograma de Pós-Graduação em Engenharia EletrônicaUERJBrasilCentro de Tecnologia e Ciências::Faculdade de EngenhariaElectronic engineeringComputer system failuresExpert systems (Computer)Linear integrated circuitsCollective intelligenceEngenharia eletrônicaFalhas de sistemas de computaçãoSistemas especialistas (Computação)Circuitos integrados linearesInteligência coletivaENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOSDiagnóstico de falhas em circuitos analógicos utilizando inteligência de enxameFault diagnosis in analogic circuits using swarm intelligenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJORIGINALDissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdfDissertação - Jalber Dinelli Luna Galindo - 2022 - Completo.pdfapplication/pdf1815228http://www.bdtd.uerj.br/bitstream/1/19360/2/Disserta%C3%A7%C3%A3o+-+Jalber+Dinelli+Luna+Galindo+-+2022+-+Completo.pdf85fd96918ac497e8638f2a5b0005b441MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82123http://www.bdtd.uerj.br/bitstream/1/19360/1/license.txte5502652da718045d7fcd832b79fca29MD511/193602024-02-27 15:16:53.118oai:www.bdtd.uerj.br:1/19360Tk9UQTogTElDRU7Dh0EgUkVERSBTSVJJVVMKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSAKZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVFUkogcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSAKY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIApkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUVSSiBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIApBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE7Dg08gU0VKQSBFU1RBClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVbml2ZXJzaWRhZGUgZG8gRXN0YWRvIGRvIFJpbyBkZSBKYW5laXJvIChVRVJKKSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T18:16:53Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false |
dc.title.por.fl_str_mv |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame |
dc.title.alternative.eng.fl_str_mv |
Fault diagnosis in analogic circuits using swarm intelligence |
title |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame |
spellingShingle |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame Galindo, Jalber Dinelli Luna Electronic engineering Computer system failures Expert systems (Computer) Linear integrated circuits Collective intelligence Engenharia eletrônica Falhas de sistemas de computação Sistemas especialistas (Computação) Circuitos integrados lineares Inteligência coletiva ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS |
title_short |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame |
title_full |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame |
title_fullStr |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame |
title_full_unstemmed |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame |
title_sort |
Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame |
author |
Galindo, Jalber Dinelli Luna |
author_facet |
Galindo, Jalber Dinelli Luna jalberdinelli@hotmail.com |
author_role |
author |
author2 |
jalberdinelli@hotmail.com |
author2_role |
author |
dc.contributor.advisor1.fl_str_mv |
Nedjah, Nadia |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5417946704251656 |
dc.contributor.advisor2.fl_str_mv |
Mourelle, Luiza de Macedo |
dc.contributor.advisor2Lattes.fl_str_mv |
http://lattes.cnpq.br/4189604454431782 |
dc.contributor.referee1.fl_str_mv |
Oliveira, Fernanda Duarte Vilela Reis de |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9295049424013721 |
dc.contributor.referee2.fl_str_mv |
Carvalho, Paulo Victor Rodrigues de |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8486882484125774 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3955249533072388 |
dc.contributor.author.fl_str_mv |
Galindo, Jalber Dinelli Luna jalberdinelli@hotmail.com |
contributor_str_mv |
Nedjah, Nadia Mourelle, Luiza de Macedo Oliveira, Fernanda Duarte Vilela Reis de Carvalho, Paulo Victor Rodrigues de |
dc.subject.eng.fl_str_mv |
Electronic engineering Computer system failures Expert systems (Computer) Linear integrated circuits Collective intelligence |
topic |
Electronic engineering Computer system failures Expert systems (Computer) Linear integrated circuits Collective intelligence Engenharia eletrônica Falhas de sistemas de computação Sistemas especialistas (Computação) Circuitos integrados lineares Inteligência coletiva ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS |
dc.subject.por.fl_str_mv |
Engenharia eletrônica Falhas de sistemas de computação Sistemas especialistas (Computação) Circuitos integrados lineares Inteligência coletiva |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS |
description |
Open-circuit or short-circuit faults, as well as in discrete parameters are the most used models in simulation methods before testing. Since the response of an analog circuit to an input signal is continuous, failures in any particular circuit component may not characterize all possible component failures. There are three important features in failure diagnostic of analog circuits: identifying faulty components, determining faulty element values, and circuit tolerance constraints. To solve this problem, two methodologies are proposed and implemented, which are based on optimization using swarm intelligence, for the diagnosis of failures: Particle Swarm Optimization (PSO); and bat behavior inspired optimization, termed Bat Algorithm (BA). The non-linear equations of the circuit under test are used to calculate its parameters. The objective is to identify the circuit componente that has the potential to present a failure by comparing the responses measured the real circuit and that obtained by the optimization process. Two circuits are used as case studies to evaluate the performance of the proposed implementations: the Tow-Thomas Biquad filter (circuit 1) and the ButterWorth filter (circuit 2). The proposed methodologies are able to identify or, at least, reduce the number of possibly failing components. The four main performance metrics used are extracted: accuracy, precision, sensitivity and specificity. The BA technique offers a better performance, using the combination of the maximum accessible nodes of the circuit under test, with the considered metric values 95.84%, 81.45%, 82.16% and 97.66%, respectively for circuit 1. For circuit 2, the obtained metric values are 95.13%, 74.87%, 73.30% and 97.42%, respectively. The BA technique is more efficient regarding the execution time. For circuit 1, there was an average reduction of 7.95% of the time when compared to the average time of the PSO for the circuit without failures, and of 8.12% for the cases with failure. For circuit 2, there was an average reduction of 12.2% of the time when compared to the average time of the PSO for the circuit without failures, and of 11.2% for the cases with failure. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-12-15 |
dc.date.accessioned.fl_str_mv |
2023-04-11T16:01:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GALINDO, Jalber Dinelli Luna. Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame. 2022. 251 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022. |
dc.identifier.uri.fl_str_mv |
http://www.bdtd.uerj.br/handle/1/19360 |
identifier_str_mv |
GALINDO, Jalber Dinelli Luna. Diagnóstico de falhas em circuitos analógicos utilizando inteligência de enxame. 2022. 251 f. Dissertação (Mestrado em Engenharia Eletrônica) - Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022. |
url |
http://www.bdtd.uerj.br/handle/1/19360 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Eletrônica |
dc.publisher.initials.fl_str_mv |
UERJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Tecnologia e Ciências::Faculdade de Engenharia |
publisher.none.fl_str_mv |
Universidade do Estado do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UERJ instname:Universidade do Estado do Rio de Janeiro (UERJ) instacron:UERJ |
instname_str |
Universidade do Estado do Rio de Janeiro (UERJ) |
instacron_str |
UERJ |
institution |
UERJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UERJ |
collection |
Biblioteca Digital de Teses e Dissertações da UERJ |
bitstream.url.fl_str_mv |
http://www.bdtd.uerj.br/bitstream/1/19360/2/Disserta%C3%A7%C3%A3o+-+Jalber+Dinelli+Luna+Galindo+-+2022+-+Completo.pdf http://www.bdtd.uerj.br/bitstream/1/19360/1/license.txt |
bitstream.checksum.fl_str_mv |
85fd96918ac497e8638f2a5b0005b441 e5502652da718045d7fcd832b79fca29 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ) |
repository.mail.fl_str_mv |
bdtd.suporte@uerj.br |
_version_ |
1811728727993745408 |