Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante

Detalhes bibliográficos
Autor(a) principal: Joicilene Nunes Santos
Data de Publicação: 2014
Tipo de documento: Relatório
Idioma: por
Título da fonte: Repositório Institucional da UFAM
Texto Completo: http://riu.ufam.edu.br/handle/prefix/3849
Resumo: O Problema do Caixeiro Viajante (PCV) é um clássico problema de otimização, que pode ser definida por um conjunto de cidades, um conjunto de conexões entre pares de cidades e o custo de viagem associado a cada conexão. Uma solução factível para um PCV corresponde a uma rota que inicia em uma das cidades do problema, vista as demais cidades uma única vez e retorna para a cidade inicial (Gutin e Punnen, 2002). A melhor solução (solução ótima) para o PCV é aquela que tem a rota de menor custo possível obtida por meio de uma função objetivo. Essa função avalia as soluções representadas por meio de uma combinação de valores para as variáveis do problema (Arenales et al., 2007). Para as instâncias grandes é difícil encontrar a melhor solução (solução ótima), pois o tempo computacional aumenta exponencialmente de acordo com o número de cidades do problema (Winston, 1994). Entretanto, esse tempo pode ser reduzido se, ao invés da solução ótima, for aceita uma boa solução com qualidade próxima à melhor solução. Para isso, existem abordagens tais como: métodos exatos e métodos heurísticos. Os métodos exatos procuram as soluções de forma determinística por meio de mecanismos subjacentes aos mesmos direcionando as buscas nos espaços de soluções mais promissores. Os métodos heurísticos são aplicáveis quando o esforço computacional exigido para resolver o problema é superior à capacidade de processamento da máquina. A principal vantagem das heurísticas está na flexibilidade em manipular problemas que são difíceis de serem incorporadas em um modelo exato. Por outro lado, as heurísticas não podem garantir que uma boa solução factível seja encontrada, pois muitas vezes se desconhece o valor de uma solução para comparar com a solução encontrada (Arenales et al., 2007). Meta-Heurísticas (MHs) são geralmente usadas para resolver problemas de otimização como o PCV. MHs são técnicas que processam uma interação entre os procedimentos de melhoria local e estratégias de alto nível a fim de criar um mecanismo capaz de escapar das soluções ótimas locais de baixa qualidade e realizar uma busca robusta no espaço de soluções (Gendreau e Potvin, 2010). Dentre as várias MHs para o PCV, temos o Tabu Search, que tem como princípio básico prosseguir a busca em outras regiões mesmo que uma solução ótima local já tenha sido encontrada. Esse processo de diversificação permite a movimentação da solução corrente para outras soluções piores, evitando que a busca fique restrita a uma determinada região do espaço de soluções. Para isso, BT usa uma estrutura de memória, denominada lista tabu que armazena as últimas soluções processadas. O uso dessa memória serve para evitar que a solução se movimente para outra que já tenha sido listada em iterações recentes, ou seja, evita que o algoritmo entre em ciclo.
id UFAM-1_31e1a6de5cfa48fd692764ab4117de00
oai_identifier_str oai:localhost:prefix/3849
network_acronym_str UFAM-1
network_name_str Repositório Institucional da UFAM
repository_id_str
spelling Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajanteAlgoritmosOtimizaçãoCIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃOO Problema do Caixeiro Viajante (PCV) é um clássico problema de otimização, que pode ser definida por um conjunto de cidades, um conjunto de conexões entre pares de cidades e o custo de viagem associado a cada conexão. Uma solução factível para um PCV corresponde a uma rota que inicia em uma das cidades do problema, vista as demais cidades uma única vez e retorna para a cidade inicial (Gutin e Punnen, 2002). A melhor solução (solução ótima) para o PCV é aquela que tem a rota de menor custo possível obtida por meio de uma função objetivo. Essa função avalia as soluções representadas por meio de uma combinação de valores para as variáveis do problema (Arenales et al., 2007). Para as instâncias grandes é difícil encontrar a melhor solução (solução ótima), pois o tempo computacional aumenta exponencialmente de acordo com o número de cidades do problema (Winston, 1994). Entretanto, esse tempo pode ser reduzido se, ao invés da solução ótima, for aceita uma boa solução com qualidade próxima à melhor solução. Para isso, existem abordagens tais como: métodos exatos e métodos heurísticos. Os métodos exatos procuram as soluções de forma determinística por meio de mecanismos subjacentes aos mesmos direcionando as buscas nos espaços de soluções mais promissores. Os métodos heurísticos são aplicáveis quando o esforço computacional exigido para resolver o problema é superior à capacidade de processamento da máquina. A principal vantagem das heurísticas está na flexibilidade em manipular problemas que são difíceis de serem incorporadas em um modelo exato. Por outro lado, as heurísticas não podem garantir que uma boa solução factível seja encontrada, pois muitas vezes se desconhece o valor de uma solução para comparar com a solução encontrada (Arenales et al., 2007). Meta-Heurísticas (MHs) são geralmente usadas para resolver problemas de otimização como o PCV. MHs são técnicas que processam uma interação entre os procedimentos de melhoria local e estratégias de alto nível a fim de criar um mecanismo capaz de escapar das soluções ótimas locais de baixa qualidade e realizar uma busca robusta no espaço de soluções (Gendreau e Potvin, 2010). Dentre as várias MHs para o PCV, temos o Tabu Search, que tem como princípio básico prosseguir a busca em outras regiões mesmo que uma solução ótima local já tenha sido encontrada. Esse processo de diversificação permite a movimentação da solução corrente para outras soluções piores, evitando que a busca fique restrita a uma determinada região do espaço de soluções. Para isso, BT usa uma estrutura de memória, denominada lista tabu que armazena as últimas soluções processadas. O uso dessa memória serve para evitar que a solução se movimente para outra que já tenha sido listada em iterações recentes, ou seja, evita que o algoritmo entre em ciclo.VoluntárioUniversidade Federal do AmazonasBrasilInstituto de Ciências Exatas e Tecnologia - ItacoatiaraPROGRAMA PIBIC 2013UFAMJorge Yoshio KandaJoicilene Nunes Santos2016-09-23T15:39:40Z2016-09-23T15:39:40Z2014-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reporthttp://riu.ufam.edu.br/handle/prefix/3849application/pdfinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2021-11-11T03:56:26Zoai:localhost:prefix/3849Repositório InstitucionalPUBhttp://riu.ufam.edu.br/oai/requestopendoar:2021-11-11T03:56:26Repositório Institucional da UFAM - Universidade Federal do Amazonas (UFAM)false
dc.title.none.fl_str_mv Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
title Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
spellingShingle Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
Joicilene Nunes Santos
Algoritmos
Otimização
CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃO
title_short Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
title_full Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
title_fullStr Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
title_full_unstemmed Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
title_sort Estudo, análise e implementação de algoritmo baseado no método de otimização Tabu Search para resolver problemas do caixeiro viajante
author Joicilene Nunes Santos
author_facet Joicilene Nunes Santos
author_role author
dc.contributor.none.fl_str_mv Jorge Yoshio Kanda
dc.contributor.author.fl_str_mv Joicilene Nunes Santos
dc.subject.por.fl_str_mv Algoritmos
Otimização
CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃO
topic Algoritmos
Otimização
CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃO
description O Problema do Caixeiro Viajante (PCV) é um clássico problema de otimização, que pode ser definida por um conjunto de cidades, um conjunto de conexões entre pares de cidades e o custo de viagem associado a cada conexão. Uma solução factível para um PCV corresponde a uma rota que inicia em uma das cidades do problema, vista as demais cidades uma única vez e retorna para a cidade inicial (Gutin e Punnen, 2002). A melhor solução (solução ótima) para o PCV é aquela que tem a rota de menor custo possível obtida por meio de uma função objetivo. Essa função avalia as soluções representadas por meio de uma combinação de valores para as variáveis do problema (Arenales et al., 2007). Para as instâncias grandes é difícil encontrar a melhor solução (solução ótima), pois o tempo computacional aumenta exponencialmente de acordo com o número de cidades do problema (Winston, 1994). Entretanto, esse tempo pode ser reduzido se, ao invés da solução ótima, for aceita uma boa solução com qualidade próxima à melhor solução. Para isso, existem abordagens tais como: métodos exatos e métodos heurísticos. Os métodos exatos procuram as soluções de forma determinística por meio de mecanismos subjacentes aos mesmos direcionando as buscas nos espaços de soluções mais promissores. Os métodos heurísticos são aplicáveis quando o esforço computacional exigido para resolver o problema é superior à capacidade de processamento da máquina. A principal vantagem das heurísticas está na flexibilidade em manipular problemas que são difíceis de serem incorporadas em um modelo exato. Por outro lado, as heurísticas não podem garantir que uma boa solução factível seja encontrada, pois muitas vezes se desconhece o valor de uma solução para comparar com a solução encontrada (Arenales et al., 2007). Meta-Heurísticas (MHs) são geralmente usadas para resolver problemas de otimização como o PCV. MHs são técnicas que processam uma interação entre os procedimentos de melhoria local e estratégias de alto nível a fim de criar um mecanismo capaz de escapar das soluções ótimas locais de baixa qualidade e realizar uma busca robusta no espaço de soluções (Gendreau e Potvin, 2010). Dentre as várias MHs para o PCV, temos o Tabu Search, que tem como princípio básico prosseguir a busca em outras regiões mesmo que uma solução ótima local já tenha sido encontrada. Esse processo de diversificação permite a movimentação da solução corrente para outras soluções piores, evitando que a busca fique restrita a uma determinada região do espaço de soluções. Para isso, BT usa uma estrutura de memória, denominada lista tabu que armazena as últimas soluções processadas. O uso dessa memória serve para evitar que a solução se movimente para outra que já tenha sido listada em iterações recentes, ou seja, evita que o algoritmo entre em ciclo.
publishDate 2014
dc.date.none.fl_str_mv 2014-07-31
2016-09-23T15:39:40Z
2016-09-23T15:39:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/report
format report
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://riu.ufam.edu.br/handle/prefix/3849
url http://riu.ufam.edu.br/handle/prefix/3849
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Amazonas
Brasil
Instituto de Ciências Exatas e Tecnologia - Itacoatiara
PROGRAMA PIBIC 2013
UFAM
publisher.none.fl_str_mv Universidade Federal do Amazonas
Brasil
Instituto de Ciências Exatas e Tecnologia - Itacoatiara
PROGRAMA PIBIC 2013
UFAM
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFAM
instname:Universidade Federal do Amazonas (UFAM)
instacron:UFAM
instname_str Universidade Federal do Amazonas (UFAM)
instacron_str UFAM
institution UFAM
reponame_str Repositório Institucional da UFAM
collection Repositório Institucional da UFAM
repository.name.fl_str_mv Repositório Institucional da UFAM - Universidade Federal do Amazonas (UFAM)
repository.mail.fl_str_mv
_version_ 1813274287998500864