Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFAM |
Texto Completo: | http://tede.ufam.edu.br/handle/tede/5707 |
Resumo: | As doenças cardiovasculares são a principal causa de morte a nível mundial. As tecnologias não invasivas de imageamento cardíaco, tais como a ressonância magnética, são ferramentas essenciais de apoio ao diagnóstico e monitoramento de diversas patologias. Um passo fundamental para a extração dos indicadores da função cardíaca é a segmentação dos contornos do endocárdio e do epicárdio na cavidade ventricular esquerda. Este processo, a maioria das vezes, é realizado manualmente pelos especialistas, o qual exige muito tempo e esforço, além de que é propenso a erros intra e inter-observadores. Esta dissertação desenvolve uma metodologia automática baseada em uma rede neural totalmente convolutiva para segmentar o miocárdio em imagens do eixo curto de ressonância magnética cardíaca. O banco de imagens utilizado é dividido em 10 conjuntos para propósitos de treinamento e teste. São avaliados seis métodos de otimização, a saber, o gradiente descendente estocástico, o gradiente acelerado de Nesterov, o RMSProp, o Adam, o AdaDelta e o AdaGrad. Os melhores resultados foram alcançados com o gradiente descendente estocástico e com o RMSProp. Com o gradiente descendente estocástico foi obtido um coeficiente Dice de 0,9055 e 0,9146, distância de Hausdorff de 10,5244 e 10,7240, sensibilidade de 0,9263 e 0,9135, especificidade de 0,9985 e 0,9986, para o endocárdio e epicárdio, respectivamente. Com o RMSProp foi obtido um coeficiente Dice de 0,9098 e 0,9167, distância de Hausdorff de 9,0421 e 9,7663, sensibilidade de 0,9200 e 0,9116, especificidade de 0,9988 e 0,9987, para o endocárdio e epicárdio, respectivamente. |
id |
UFAM_5e691df324b119163a4e684a31f55771 |
---|---|
oai_identifier_str |
oai:https://tede.ufam.edu.br/handle/:tede/5707 |
network_acronym_str |
UFAM |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFAM |
repository_id_str |
6592 |
spelling |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivasRessonância Magnética CardíacaMiocárdioRedes Neurais ConvolutivasENGENHARIAS: ENGENHARIA ELÉTRICAAs doenças cardiovasculares são a principal causa de morte a nível mundial. As tecnologias não invasivas de imageamento cardíaco, tais como a ressonância magnética, são ferramentas essenciais de apoio ao diagnóstico e monitoramento de diversas patologias. Um passo fundamental para a extração dos indicadores da função cardíaca é a segmentação dos contornos do endocárdio e do epicárdio na cavidade ventricular esquerda. Este processo, a maioria das vezes, é realizado manualmente pelos especialistas, o qual exige muito tempo e esforço, além de que é propenso a erros intra e inter-observadores. Esta dissertação desenvolve uma metodologia automática baseada em uma rede neural totalmente convolutiva para segmentar o miocárdio em imagens do eixo curto de ressonância magnética cardíaca. O banco de imagens utilizado é dividido em 10 conjuntos para propósitos de treinamento e teste. São avaliados seis métodos de otimização, a saber, o gradiente descendente estocástico, o gradiente acelerado de Nesterov, o RMSProp, o Adam, o AdaDelta e o AdaGrad. Os melhores resultados foram alcançados com o gradiente descendente estocástico e com o RMSProp. Com o gradiente descendente estocástico foi obtido um coeficiente Dice de 0,9055 e 0,9146, distância de Hausdorff de 10,5244 e 10,7240, sensibilidade de 0,9263 e 0,9135, especificidade de 0,9985 e 0,9986, para o endocárdio e epicárdio, respectivamente. Com o RMSProp foi obtido um coeficiente Dice de 0,9098 e 0,9167, distância de Hausdorff de 9,0421 e 9,7663, sensibilidade de 0,9200 e 0,9116, especificidade de 0,9988 e 0,9987, para o endocárdio e epicárdio, respectivamente.Cardiovascular diseases are the leading cause of death worldwide. Noninvasive cardiac imaging technologies, such as magnetic resonance, are essential tools to support the diagnosis and monitoring of various pathologies. The previous step for the extraction of cardiac function indicators is the endocardium and epicardium contours segmentation in the left ventricular cavity. This process often is performed manually by the specialists, which requires a lot of time and effort, and is prone to intra and inter-observer errors. This dissertation develops an automatic methodology based on a fully convolutional neural network to segment the myocardium in short axis cardiac magnetic resonance images. The database used is divided into 10 sets for training and testing purposes. Six optimization methods are evaluated: stochastic gradient descend, Nesterov accelerated gradient, RMSProp, Adam, AdaDelta and AdaGrad. The best results were achieved with the stochastic gradient descend and RMSProp. With the former, a Dice coefficient of 0.9055 and 0.9146, Hausdorff distance of 10.5244 and 10.7240, sensitivity of 0.9263 and 0.9135, specificity of 0.9985 and 0.9986 were obtained for endocardium and epicardium, respectively. With RMSProp, a Dice coefficient of 0.9098 and 0.9167, Hausdorff distance of 9.0421 and 9.7663, sensitivity of 0.9200 and 0.9116, specificity of 0.9988 and 0.9987 were obtained for endocardium and epicardium, respectively.CAPESUniversidade Federal do AmazonasFaculdade de TecnologiaBrasilUFAMPrograma de Pós-graduação em Engenharia ElétricaCosta, Marly Guimarães Fernandeshttp://lattes.cnpq.br/7169358412541736Costa, Marly Guimarães Fernandeshttp://lattes.cnpq.br/7169358412541736Romaguera, Liset Várquezhttp://lattes.cnpq.br/27020993211663302017-06-23T13:09:36Z2017-04-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfROMAGUERA, Liset Vázquez. Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas. 2017. 153 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2017.http://tede.ufam.edu.br/handle/tede/5707porhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2018-08-16T18:10:08Zoai:https://tede.ufam.edu.br/handle/:tede/5707Biblioteca Digital de Teses e Dissertaçõeshttp://200.129.163.131:8080/PUBhttp://200.129.163.131:8080/oai/requestddbc@ufam.edu.br||ddbc@ufam.edu.bropendoar:65922018-08-16T18:10:08Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)false |
dc.title.none.fl_str_mv |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas |
title |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas |
spellingShingle |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas Romaguera, Liset Várquez Ressonância Magnética Cardíaca Miocárdio Redes Neurais Convolutivas ENGENHARIAS: ENGENHARIA ELÉTRICA |
title_short |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas |
title_full |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas |
title_fullStr |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas |
title_full_unstemmed |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas |
title_sort |
Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas |
author |
Romaguera, Liset Várquez |
author_facet |
Romaguera, Liset Várquez http://lattes.cnpq.br/2702099321166330 |
author_role |
author |
author2 |
http://lattes.cnpq.br/2702099321166330 |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Marly Guimarães Fernandes http://lattes.cnpq.br/7169358412541736 Costa, Marly Guimarães Fernandes http://lattes.cnpq.br/7169358412541736 |
dc.contributor.author.fl_str_mv |
Romaguera, Liset Várquez http://lattes.cnpq.br/2702099321166330 |
dc.subject.por.fl_str_mv |
Ressonância Magnética Cardíaca Miocárdio Redes Neurais Convolutivas ENGENHARIAS: ENGENHARIA ELÉTRICA |
topic |
Ressonância Magnética Cardíaca Miocárdio Redes Neurais Convolutivas ENGENHARIAS: ENGENHARIA ELÉTRICA |
description |
As doenças cardiovasculares são a principal causa de morte a nível mundial. As tecnologias não invasivas de imageamento cardíaco, tais como a ressonância magnética, são ferramentas essenciais de apoio ao diagnóstico e monitoramento de diversas patologias. Um passo fundamental para a extração dos indicadores da função cardíaca é a segmentação dos contornos do endocárdio e do epicárdio na cavidade ventricular esquerda. Este processo, a maioria das vezes, é realizado manualmente pelos especialistas, o qual exige muito tempo e esforço, além de que é propenso a erros intra e inter-observadores. Esta dissertação desenvolve uma metodologia automática baseada em uma rede neural totalmente convolutiva para segmentar o miocárdio em imagens do eixo curto de ressonância magnética cardíaca. O banco de imagens utilizado é dividido em 10 conjuntos para propósitos de treinamento e teste. São avaliados seis métodos de otimização, a saber, o gradiente descendente estocástico, o gradiente acelerado de Nesterov, o RMSProp, o Adam, o AdaDelta e o AdaGrad. Os melhores resultados foram alcançados com o gradiente descendente estocástico e com o RMSProp. Com o gradiente descendente estocástico foi obtido um coeficiente Dice de 0,9055 e 0,9146, distância de Hausdorff de 10,5244 e 10,7240, sensibilidade de 0,9263 e 0,9135, especificidade de 0,9985 e 0,9986, para o endocárdio e epicárdio, respectivamente. Com o RMSProp foi obtido um coeficiente Dice de 0,9098 e 0,9167, distância de Hausdorff de 9,0421 e 9,7663, sensibilidade de 0,9200 e 0,9116, especificidade de 0,9988 e 0,9987, para o endocárdio e epicárdio, respectivamente. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-23T13:09:36Z 2017-04-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ROMAGUERA, Liset Vázquez. Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas. 2017. 153 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2017. http://tede.ufam.edu.br/handle/tede/5707 |
identifier_str_mv |
ROMAGUERA, Liset Vázquez. Segmentação do miocárdio em imagens de MRI cardíaca utilizando redes neurais convolutivas. 2017. 153 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2017. |
url |
http://tede.ufam.edu.br/handle/tede/5707 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Amazonas Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica |
publisher.none.fl_str_mv |
Universidade Federal do Amazonas Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFAM instname:Universidade Federal do Amazonas (UFAM) instacron:UFAM |
instname_str |
Universidade Federal do Amazonas (UFAM) |
instacron_str |
UFAM |
institution |
UFAM |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFAM |
collection |
Biblioteca Digital de Teses e Dissertações da UFAM |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM) |
repository.mail.fl_str_mv |
ddbc@ufam.edu.br||ddbc@ufam.edu.br |
_version_ |
1809732021164965888 |