Aritmética e aplicações

Detalhes bibliográficos
Autor(a) principal: Matos, Jair da Silva
Data de Publicação: 2017
Outros Autores: http://lattes.cnpq.br/1802526277389749
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFAM
Texto Completo: http://tede.ufam.edu.br/handle/tede/6123
Resumo: Essa dissertação de conclusão de curso tem por objetivo apresentar sucintamente algumas aplicações imediatas, embora não-triviais de Teoria dos Números-Aritmética, dentre as quais podemos destacar o Algoritmo de Euclides, congruências modulares e o Teorema Chinês dos Restos. Além destes tópicos abordados, damos uma atenção especial no início deste trabalho de conclusão de curso a alguns dos grandes matemáticos que contribuíram à aritmética entre eles, Diofante de Alexandria, Pierre de Fermat, Euclides de Alexandria entre outros. A estrutura da dissertação é a seguinte: No capítulo 2 tratamos da revisão teórica sobre os números inteiros e suas propriedades. Destacamos o Princípio da Boa Ordenação, que caracteriza os números inteiros, tratamos de algumas proposições importantes, máximo divisor comum e suas propriedades, números primos, o Teorema Fundamental da Aritmética, o Pequeno Teorema de Fermat, números de Fermat, números de Mersenne, números Perfeitos e finalizamos o capítulo 2 com o estudo das congruências e a aritmética dos restos. No capítulo 3 apresentamos algumas aplicações e iniciamos com as Equações Diofantinas Lineares, Congruências Lineares e suas resoluções, o Teorema Chinês dos Restos, Classes Residuais e, finalmente, resolvemos problemas que fizeram parte dos Exames Nacionais de Qualificação do PROFMAT desde 2012 até 2017. Tais problemas são resolvidos com as ferramentas propostas no texto, lemas, teoremas, proposições e propriedades, que facilitam a resolução. Acreditamos que tais conteúdos servem para contribuir na formação do futuro professor do Ensino Básico, assim como aprofundar os conhecimentos daqueles que já labutam na área do Ensino de Matemática.
id UFAM_6f8b4802455966b3c9fe60be1805ec26
oai_identifier_str oai:https://tede.ufam.edu.br/handle/:tede/6123
network_acronym_str UFAM
network_name_str Biblioteca Digital de Teses e Dissertações da UFAM
repository_id_str 6592
spelling Aritmética e aplicaçõesAritméticaExame de QualificaçãoHistória da AritméticaCIÊNCIAS EXATAS E DA TERRA: MATEMÁTICAEssa dissertação de conclusão de curso tem por objetivo apresentar sucintamente algumas aplicações imediatas, embora não-triviais de Teoria dos Números-Aritmética, dentre as quais podemos destacar o Algoritmo de Euclides, congruências modulares e o Teorema Chinês dos Restos. Além destes tópicos abordados, damos uma atenção especial no início deste trabalho de conclusão de curso a alguns dos grandes matemáticos que contribuíram à aritmética entre eles, Diofante de Alexandria, Pierre de Fermat, Euclides de Alexandria entre outros. A estrutura da dissertação é a seguinte: No capítulo 2 tratamos da revisão teórica sobre os números inteiros e suas propriedades. Destacamos o Princípio da Boa Ordenação, que caracteriza os números inteiros, tratamos de algumas proposições importantes, máximo divisor comum e suas propriedades, números primos, o Teorema Fundamental da Aritmética, o Pequeno Teorema de Fermat, números de Fermat, números de Mersenne, números Perfeitos e finalizamos o capítulo 2 com o estudo das congruências e a aritmética dos restos. No capítulo 3 apresentamos algumas aplicações e iniciamos com as Equações Diofantinas Lineares, Congruências Lineares e suas resoluções, o Teorema Chinês dos Restos, Classes Residuais e, finalmente, resolvemos problemas que fizeram parte dos Exames Nacionais de Qualificação do PROFMAT desde 2012 até 2017. Tais problemas são resolvidos com as ferramentas propostas no texto, lemas, teoremas, proposições e propriedades, que facilitam a resolução. Acreditamos que tais conteúdos servem para contribuir na formação do futuro professor do Ensino Básico, assim como aprofundar os conhecimentos daqueles que já labutam na área do Ensino de Matemática.This dissertation aims to present succinctly some immediate, thout not trivial, Number Theory- Arithmetic applications, among which we can highlight the Euclidean Algorithm, Modular Congruences and the Chinese Remainder Theorem. In addition to these topics, we give special attention at the great mathematicians who contributed to the arithmetic among them, Diophantus od Alexandria, Pierre de Fermat, Euclides of Alexandria among others. The structure of the dissertation is as follows: in chapter 2 we deal with the theoretical revision of integers and their properties. We emphasize the Well Ordering Principle, wich characterizes whole number, we deal with some important propositions, common maximum divisor and it´s properties, prime numbers, the Fundamental Theorem of Arithmetic, Fermat´s Little Theorem, Fermat numbers, Mersenne´s Numbers, Numbers Perfect, and we end with the study of Congruences and the Arithmetic of the Remains. In chapter 3 we present some applications that we started with the Linear Diophantine Equations, Linear Congruences and Their resolutions, the Chinese Residue Theorem, Residual Classes, and finaly we solve problems that were part of the PROFMAT National Qualification Exams from 2012 to 2017. Such proplems are solved with the tools proposed in the text, lemmas, theorems, propositions and properties that facilitate resolution. We believe that these contents serve to contribute to the formation of the future teacher of Basic Education, as well as to deepen the knowledge of those who already work in the area of Mathematics Teaching.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do AmazonasInstituto de Ciências ExatasBrasilUFAMPrograma de Pós-graduação em MatemáticaOliveira, Nilomar Vieira dehttp://lattes.cnpq.br/4870990824639847Prata, Roberto Antonio CordeiroAmorim Neto, Alcides de CastroMatos, Jair da Silvahttp://lattes.cnpq.br/18025262773897492018-02-01T13:56:48Z2017-11-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMATOS, Jair da Silva. Aritmética e aplicações. 2017. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Amazonas, Manaus, 2017.http://tede.ufam.edu.br/handle/tede/6123porhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2019-11-14T14:56:45Zoai:https://tede.ufam.edu.br/handle/:tede/6123Biblioteca Digital de Teses e Dissertaçõeshttp://200.129.163.131:8080/PUBhttp://200.129.163.131:8080/oai/requestddbc@ufam.edu.br||ddbc@ufam.edu.bropendoar:65922019-11-14T14:56:45Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)false
dc.title.none.fl_str_mv Aritmética e aplicações
title Aritmética e aplicações
spellingShingle Aritmética e aplicações
Matos, Jair da Silva
Aritmética
Exame de Qualificação
História da Aritmética
CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA
title_short Aritmética e aplicações
title_full Aritmética e aplicações
title_fullStr Aritmética e aplicações
title_full_unstemmed Aritmética e aplicações
title_sort Aritmética e aplicações
author Matos, Jair da Silva
author_facet Matos, Jair da Silva
http://lattes.cnpq.br/1802526277389749
author_role author
author2 http://lattes.cnpq.br/1802526277389749
author2_role author
dc.contributor.none.fl_str_mv Oliveira, Nilomar Vieira de
http://lattes.cnpq.br/4870990824639847
Prata, Roberto Antonio Cordeiro
Amorim Neto, Alcides de Castro
dc.contributor.author.fl_str_mv Matos, Jair da Silva
http://lattes.cnpq.br/1802526277389749
dc.subject.por.fl_str_mv Aritmética
Exame de Qualificação
História da Aritmética
CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA
topic Aritmética
Exame de Qualificação
História da Aritmética
CIÊNCIAS EXATAS E DA TERRA: MATEMÁTICA
description Essa dissertação de conclusão de curso tem por objetivo apresentar sucintamente algumas aplicações imediatas, embora não-triviais de Teoria dos Números-Aritmética, dentre as quais podemos destacar o Algoritmo de Euclides, congruências modulares e o Teorema Chinês dos Restos. Além destes tópicos abordados, damos uma atenção especial no início deste trabalho de conclusão de curso a alguns dos grandes matemáticos que contribuíram à aritmética entre eles, Diofante de Alexandria, Pierre de Fermat, Euclides de Alexandria entre outros. A estrutura da dissertação é a seguinte: No capítulo 2 tratamos da revisão teórica sobre os números inteiros e suas propriedades. Destacamos o Princípio da Boa Ordenação, que caracteriza os números inteiros, tratamos de algumas proposições importantes, máximo divisor comum e suas propriedades, números primos, o Teorema Fundamental da Aritmética, o Pequeno Teorema de Fermat, números de Fermat, números de Mersenne, números Perfeitos e finalizamos o capítulo 2 com o estudo das congruências e a aritmética dos restos. No capítulo 3 apresentamos algumas aplicações e iniciamos com as Equações Diofantinas Lineares, Congruências Lineares e suas resoluções, o Teorema Chinês dos Restos, Classes Residuais e, finalmente, resolvemos problemas que fizeram parte dos Exames Nacionais de Qualificação do PROFMAT desde 2012 até 2017. Tais problemas são resolvidos com as ferramentas propostas no texto, lemas, teoremas, proposições e propriedades, que facilitam a resolução. Acreditamos que tais conteúdos servem para contribuir na formação do futuro professor do Ensino Básico, assim como aprofundar os conhecimentos daqueles que já labutam na área do Ensino de Matemática.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-29
2018-02-01T13:56:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MATOS, Jair da Silva. Aritmética e aplicações. 2017. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Amazonas, Manaus, 2017.
http://tede.ufam.edu.br/handle/tede/6123
identifier_str_mv MATOS, Jair da Silva. Aritmética e aplicações. 2017. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Amazonas, Manaus, 2017.
url http://tede.ufam.edu.br/handle/tede/6123
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
publisher.none.fl_str_mv Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFAM
instname:Universidade Federal do Amazonas (UFAM)
instacron:UFAM
instname_str Universidade Federal do Amazonas (UFAM)
instacron_str UFAM
institution UFAM
reponame_str Biblioteca Digital de Teses e Dissertações da UFAM
collection Biblioteca Digital de Teses e Dissertações da UFAM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)
repository.mail.fl_str_mv ddbc@ufam.edu.br||ddbc@ufam.edu.br
_version_ 1809732024600100864