Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas

Detalhes bibliográficos
Autor(a) principal: Portela, Ronaldo de Sá
Data de Publicação: 2020
Outros Autores: http://lattes.cnpq.br/3550218083163609
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFAM
Texto Completo: https://tede.ufam.edu.br/handle/tede/8210
Resumo: Segundo dados do Instituto Nacional de Câncer, o câncer de pulmão é um dos tumores mais frequentes na população brasileira. O processo para seu diagnóstico por vezes passa pela necessidade de segmentar a região pulmonar em um exame de imagem, fase essa que demanda horas de um profissional da área médica. Sendo assim, a utilização de ferramentas que aplicam técnicas automatizadas para realizar essa tarefa pode auxiliá-los. Esta dissertação desenvolve uma metodologia automática, baseada em redes neurais convolutivas, para segmentar a região pulmonar em imagens de radiografia torácica. São desenvolvidas três arquiteturas (CNN1, CNN2 e CNN3), onde as arquiteturas CNN1 e CNN2 são de rede direta, enquanto a arquitetura CNN3 é uma topologia de grafos acíclicos direcionados (DAG). Em conjunto com as arquiteturas são investigados três diferentes métodos de regularização (Dropout, L2 e Dropout+L2) e três diferentes métodos de otimização (SGDM, RMSPROP e ADAM). A base de dados utilizada para esse estudo é a JSRT - Japanese Society of Radiological Technology, que contém 247 imagens de radiografia torácica. Como forma de mensurar a performance das redes estudadas foram utilizados seis métricas de desempenho, são elas: Acurácia Global, Acurácia, Coeficiente de Jaccard, Coeficiente de Jaccard Ponderado, Score F1 e Índice Dice. Ao término de todas as simulações, os melhores resultados foram alcançados utilizando a rede CNN3, que faz uso da topologia DAG, conjuntamente com o método de regularização Dropout+L2 e método de otimização ADAM. As métricas obtidas foram: Acurácia Global igual a 0.99139 ± 0.00098; Acurácia igual a 0.98927 ± 0.00161; Coeficiente de Jaccard de 0.97967 ± 0.00232; Coeficiente de Jaccard Ponderado igual a 0.98294 ± 0.00191; Score F1 de 0.97475 ± 0.00357 e, por fim, um Índice Dice de 0.98921 ± 0.00163.
id UFAM_befb31c430e5c2c589b43674101c86c7
oai_identifier_str oai:https://tede.ufam.edu.br/handle/:tede/8210
network_acronym_str UFAM
network_name_str Biblioteca Digital de Teses e Dissertações da UFAM
repository_id_str 6592
spelling Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivasLung region segmentation in chest x-ray images using deep convolutional neural networksConvolutive neural networkChest radiographyJapanese Society of Radiological TechnologyExame de imagemNeoplasia pulmonarENGENHARIASSegmentação PulmonarRadiografia TorácicaRedes Neurais ConvolutivasAprendizado ProfundoSegundo dados do Instituto Nacional de Câncer, o câncer de pulmão é um dos tumores mais frequentes na população brasileira. O processo para seu diagnóstico por vezes passa pela necessidade de segmentar a região pulmonar em um exame de imagem, fase essa que demanda horas de um profissional da área médica. Sendo assim, a utilização de ferramentas que aplicam técnicas automatizadas para realizar essa tarefa pode auxiliá-los. Esta dissertação desenvolve uma metodologia automática, baseada em redes neurais convolutivas, para segmentar a região pulmonar em imagens de radiografia torácica. São desenvolvidas três arquiteturas (CNN1, CNN2 e CNN3), onde as arquiteturas CNN1 e CNN2 são de rede direta, enquanto a arquitetura CNN3 é uma topologia de grafos acíclicos direcionados (DAG). Em conjunto com as arquiteturas são investigados três diferentes métodos de regularização (Dropout, L2 e Dropout+L2) e três diferentes métodos de otimização (SGDM, RMSPROP e ADAM). A base de dados utilizada para esse estudo é a JSRT - Japanese Society of Radiological Technology, que contém 247 imagens de radiografia torácica. Como forma de mensurar a performance das redes estudadas foram utilizados seis métricas de desempenho, são elas: Acurácia Global, Acurácia, Coeficiente de Jaccard, Coeficiente de Jaccard Ponderado, Score F1 e Índice Dice. Ao término de todas as simulações, os melhores resultados foram alcançados utilizando a rede CNN3, que faz uso da topologia DAG, conjuntamente com o método de regularização Dropout+L2 e método de otimização ADAM. As métricas obtidas foram: Acurácia Global igual a 0.99139 ± 0.00098; Acurácia igual a 0.98927 ± 0.00161; Coeficiente de Jaccard de 0.97967 ± 0.00232; Coeficiente de Jaccard Ponderado igual a 0.98294 ± 0.00191; Score F1 de 0.97475 ± 0.00357 e, por fim, um Índice Dice de 0.98921 ± 0.00163.According to data from the National Cancer Institute, lung cancer is one of the most frequent tumors in the Brazilian population. The process for its diagnosis sometimes involves the need to segment the pulmonary region in an image exam, a phase that requires hours from a medical professional. Therefore, the use of tools that apply automated techniques to accomplish this task could help them. This dissertation develops an automatic methodology, based on convolutive neural networks, to segment the lung region in chest X-ray images. Three architectures are developed (CNN1, CNN2 and CNN3), where the CNN1 and CNN2 architectures are of direct network, while the CNN3 architecture is a topology of directed acyclic graphs (DAG). In conjunction with the architectures, three different regularization methods (Dropout, L2 and Dropout + L2) and three different optimization methods (SGDM, RMSPROP and ADAM) are investigated. The database used for this study is the JSRT - Japanese Society of Radiological Technology, which contains 247 images of chest radiography. As a way of measuring the performance of the studied networks, six performance metrics were used, they are: Global Accuracy, Accuracy, Jaccard Coefficient, Weighted Jaccard Coefficient, Score F1 and Dice Index. At the end of all simulations, the best results were achieved using the CNN3 network, which makes use of the DAG topology, together with the Dropout + L2 regularization method and the ADAM optimization method. The metrics obtained were: Global Accuracy equal to 0.99139 ± 0.00098; Accuracy equal to 0.98927 ± 0.00161; Jaccard coefficient of 0.97967 ± 0.00232; Weighted Jaccard coefficient equal to 0.98294 ± 0.00191; F1 Score of 0.97475 ± 0.00357 and, finally, a Dice Index of 0.98921 ± 0.00163.Universidade Federal do AmazonasFaculdade de TecnologiaBrasilUFAMPrograma de Pós-graduação em Engenharia ElétricaCosta Filho, Cícero Ferreira Fernandeshttp://lattes.cnpq.br/3029011770761387Oliveira, Jozias Parente dehttp://lattes.cnpq.br/1169202481169729Costa, José Mir Justino dahttp://lattes.cnpq.br/2396817509327075Portela, Ronaldo de Sáhttp://lattes.cnpq.br/35502180831636092021-04-09T15:31:32Z2020-05-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPORTELA, Ronaldo de Sá. Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas. 2020. 124 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2020.https://tede.ufam.edu.br/handle/tede/8210porhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2021-04-13T02:10:52Zoai:https://tede.ufam.edu.br/handle/:tede/8210Biblioteca Digital de Teses e Dissertaçõeshttp://200.129.163.131:8080/PUBhttp://200.129.163.131:8080/oai/requestddbc@ufam.edu.br||ddbc@ufam.edu.bropendoar:65922021-04-13T02:10:52Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)false
dc.title.none.fl_str_mv Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
Lung region segmentation in chest x-ray images using deep convolutional neural networks
title Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
spellingShingle Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
Portela, Ronaldo de Sá
Convolutive neural network
Chest radiography
Japanese Society of Radiological Technology
Exame de imagem
Neoplasia pulmonar
ENGENHARIAS
Segmentação Pulmonar
Radiografia Torácica
Redes Neurais Convolutivas
Aprendizado Profundo
title_short Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_full Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_fullStr Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_full_unstemmed Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
title_sort Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas
author Portela, Ronaldo de Sá
author_facet Portela, Ronaldo de Sá
http://lattes.cnpq.br/3550218083163609
author_role author
author2 http://lattes.cnpq.br/3550218083163609
author2_role author
dc.contributor.none.fl_str_mv Costa Filho, Cícero Ferreira Fernandes
http://lattes.cnpq.br/3029011770761387
Oliveira, Jozias Parente de
http://lattes.cnpq.br/1169202481169729
Costa, José Mir Justino da
http://lattes.cnpq.br/2396817509327075
dc.contributor.author.fl_str_mv Portela, Ronaldo de Sá
http://lattes.cnpq.br/3550218083163609
dc.subject.por.fl_str_mv Convolutive neural network
Chest radiography
Japanese Society of Radiological Technology
Exame de imagem
Neoplasia pulmonar
ENGENHARIAS
Segmentação Pulmonar
Radiografia Torácica
Redes Neurais Convolutivas
Aprendizado Profundo
topic Convolutive neural network
Chest radiography
Japanese Society of Radiological Technology
Exame de imagem
Neoplasia pulmonar
ENGENHARIAS
Segmentação Pulmonar
Radiografia Torácica
Redes Neurais Convolutivas
Aprendizado Profundo
description Segundo dados do Instituto Nacional de Câncer, o câncer de pulmão é um dos tumores mais frequentes na população brasileira. O processo para seu diagnóstico por vezes passa pela necessidade de segmentar a região pulmonar em um exame de imagem, fase essa que demanda horas de um profissional da área médica. Sendo assim, a utilização de ferramentas que aplicam técnicas automatizadas para realizar essa tarefa pode auxiliá-los. Esta dissertação desenvolve uma metodologia automática, baseada em redes neurais convolutivas, para segmentar a região pulmonar em imagens de radiografia torácica. São desenvolvidas três arquiteturas (CNN1, CNN2 e CNN3), onde as arquiteturas CNN1 e CNN2 são de rede direta, enquanto a arquitetura CNN3 é uma topologia de grafos acíclicos direcionados (DAG). Em conjunto com as arquiteturas são investigados três diferentes métodos de regularização (Dropout, L2 e Dropout+L2) e três diferentes métodos de otimização (SGDM, RMSPROP e ADAM). A base de dados utilizada para esse estudo é a JSRT - Japanese Society of Radiological Technology, que contém 247 imagens de radiografia torácica. Como forma de mensurar a performance das redes estudadas foram utilizados seis métricas de desempenho, são elas: Acurácia Global, Acurácia, Coeficiente de Jaccard, Coeficiente de Jaccard Ponderado, Score F1 e Índice Dice. Ao término de todas as simulações, os melhores resultados foram alcançados utilizando a rede CNN3, que faz uso da topologia DAG, conjuntamente com o método de regularização Dropout+L2 e método de otimização ADAM. As métricas obtidas foram: Acurácia Global igual a 0.99139 ± 0.00098; Acurácia igual a 0.98927 ± 0.00161; Coeficiente de Jaccard de 0.97967 ± 0.00232; Coeficiente de Jaccard Ponderado igual a 0.98294 ± 0.00191; Score F1 de 0.97475 ± 0.00357 e, por fim, um Índice Dice de 0.98921 ± 0.00163.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-29
2021-04-09T15:31:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PORTELA, Ronaldo de Sá. Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas. 2020. 124 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2020.
https://tede.ufam.edu.br/handle/tede/8210
identifier_str_mv PORTELA, Ronaldo de Sá. Segmentação da região pulmonar em imagens de radiografia torácica utilizando redes neurais convolutivas. 2020. 124 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal do Amazonas, Manaus, 2020.
url https://tede.ufam.edu.br/handle/tede/8210
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Amazonas
Faculdade de Tecnologia
Brasil
UFAM
Programa de Pós-graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal do Amazonas
Faculdade de Tecnologia
Brasil
UFAM
Programa de Pós-graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFAM
instname:Universidade Federal do Amazonas (UFAM)
instacron:UFAM
instname_str Universidade Federal do Amazonas (UFAM)
instacron_str UFAM
institution UFAM
reponame_str Biblioteca Digital de Teses e Dissertações da UFAM
collection Biblioteca Digital de Teses e Dissertações da UFAM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)
repository.mail.fl_str_mv ddbc@ufam.edu.br||ddbc@ufam.edu.br
_version_ 1809732042827497472