Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation

Detalhes bibliográficos
Autor(a) principal: Pinto, Bráulio Henrique Orion Uchôa Veloso
Data de Publicação: 2021
Outros Autores: http://lattes.cnpq.br/2044598311458637, https://orcid.org/0000-0001-8885-5609
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFAM
Texto Completo: https://tede.ufam.edu.br/handle/tede/8374
Resumo: This work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account.
id UFAM_c6db9387def57d8c4039319c106fe2c5
oai_identifier_str oai:https://tede.ufam.edu.br/handle/:tede/8374
network_acronym_str UFAM
network_name_str Biblioteca Digital de Teses e Dissertações da UFAM
repository_id_str 6592
spelling Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian EstimationSistema Robusto de Localização Interna usando Agrupamento K-means e Estimativa BayesianaSistema de posicionamento internoInferência bayesianaSistema KLIPBanco de dados de impressão digitalBluetooth Low EnergyCIÊNCIAS EXATAS E DA TERRABayesian estimationIndoor positioningK-means clusteringLog-distance path loss modelRssiThis work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account.This work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account.FAPEAM - Fundação de Amparo à Pesquisa do Estado do AmazonasCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do AmazonasInstituto de ComputaçãoBrasilUFAMPrograma de Pós-graduação em InformáticaOliveira, Horácio Antonio Braga Fernandes dehttp://lattes.cnpq.br/9314744999783676Pazzi, Richard Werner*Barreto, Raimundo da Silvahttp://lattes.cnpq.br/1132672107627968Pinto, Bráulio Henrique Orion Uchôa Velosohttp://lattes.cnpq.br/2044598311458637https://orcid.org/0000-0001-8885-56092021-07-29T14:10:12Z2021-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPINTO, Bráulio Henrique Orion Uchôa Veloso. Robust RSSI-based indoor positioning system using k-means clustering and Bayesian estimation. 2021. 40 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2021.https://tede.ufam.edu.br/handle/tede/8374enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2021-07-30T05:03:52Zoai:https://tede.ufam.edu.br/handle/:tede/8374Biblioteca Digital de Teses e Dissertaçõeshttp://200.129.163.131:8080/PUBhttp://200.129.163.131:8080/oai/requestddbc@ufam.edu.br||ddbc@ufam.edu.bropendoar:65922021-07-30T05:03:52Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)false
dc.title.none.fl_str_mv Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
Sistema Robusto de Localização Interna usando Agrupamento K-means e Estimativa Bayesiana
title Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
spellingShingle Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
Pinto, Bráulio Henrique Orion Uchôa Veloso
Sistema de posicionamento interno
Inferência bayesiana
Sistema KLIP
Banco de dados de impressão digital
Bluetooth Low Energy
CIÊNCIAS EXATAS E DA TERRA
Bayesian estimation
Indoor positioning
K-means clustering
Log-distance path loss model
Rssi
title_short Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
title_full Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
title_fullStr Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
title_full_unstemmed Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
title_sort Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
author Pinto, Bráulio Henrique Orion Uchôa Veloso
author_facet Pinto, Bráulio Henrique Orion Uchôa Veloso
http://lattes.cnpq.br/2044598311458637
https://orcid.org/0000-0001-8885-5609
author_role author
author2 http://lattes.cnpq.br/2044598311458637
https://orcid.org/0000-0001-8885-5609
author2_role author
author
dc.contributor.none.fl_str_mv Oliveira, Horácio Antonio Braga Fernandes de
http://lattes.cnpq.br/9314744999783676
Pazzi, Richard Werner
*
Barreto, Raimundo da Silva
http://lattes.cnpq.br/1132672107627968
dc.contributor.author.fl_str_mv Pinto, Bráulio Henrique Orion Uchôa Veloso
http://lattes.cnpq.br/2044598311458637
https://orcid.org/0000-0001-8885-5609
dc.subject.por.fl_str_mv Sistema de posicionamento interno
Inferência bayesiana
Sistema KLIP
Banco de dados de impressão digital
Bluetooth Low Energy
CIÊNCIAS EXATAS E DA TERRA
Bayesian estimation
Indoor positioning
K-means clustering
Log-distance path loss model
Rssi
topic Sistema de posicionamento interno
Inferência bayesiana
Sistema KLIP
Banco de dados de impressão digital
Bluetooth Low Energy
CIÊNCIAS EXATAS E DA TERRA
Bayesian estimation
Indoor positioning
K-means clustering
Log-distance path loss model
Rssi
description This work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-29T14:10:12Z
2021-07-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PINTO, Bráulio Henrique Orion Uchôa Veloso. Robust RSSI-based indoor positioning system using k-means clustering and Bayesian estimation. 2021. 40 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2021.
https://tede.ufam.edu.br/handle/tede/8374
identifier_str_mv PINTO, Bráulio Henrique Orion Uchôa Veloso. Robust RSSI-based indoor positioning system using k-means clustering and Bayesian estimation. 2021. 40 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2021.
url https://tede.ufam.edu.br/handle/tede/8374
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
publisher.none.fl_str_mv Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFAM
instname:Universidade Federal do Amazonas (UFAM)
instacron:UFAM
instname_str Universidade Federal do Amazonas (UFAM)
instacron_str UFAM
institution UFAM
reponame_str Biblioteca Digital de Teses e Dissertações da UFAM
collection Biblioteca Digital de Teses e Dissertações da UFAM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)
repository.mail.fl_str_mv ddbc@ufam.edu.br||ddbc@ufam.edu.br
_version_ 1809732045159530496