Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFAM |
Texto Completo: | https://tede.ufam.edu.br/handle/tede/8374 |
Resumo: | This work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account. |
id |
UFAM_c6db9387def57d8c4039319c106fe2c5 |
---|---|
oai_identifier_str |
oai:https://tede.ufam.edu.br/handle/:tede/8374 |
network_acronym_str |
UFAM |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFAM |
repository_id_str |
6592 |
spelling |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian EstimationSistema Robusto de Localização Interna usando Agrupamento K-means e Estimativa BayesianaSistema de posicionamento internoInferência bayesianaSistema KLIPBanco de dados de impressão digitalBluetooth Low EnergyCIÊNCIAS EXATAS E DA TERRABayesian estimationIndoor positioningK-means clusteringLog-distance path loss modelRssiThis work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account.This work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account.FAPEAM - Fundação de Amparo à Pesquisa do Estado do AmazonasCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do AmazonasInstituto de ComputaçãoBrasilUFAMPrograma de Pós-graduação em InformáticaOliveira, Horácio Antonio Braga Fernandes dehttp://lattes.cnpq.br/9314744999783676Pazzi, Richard Werner*Barreto, Raimundo da Silvahttp://lattes.cnpq.br/1132672107627968Pinto, Bráulio Henrique Orion Uchôa Velosohttp://lattes.cnpq.br/2044598311458637https://orcid.org/0000-0001-8885-56092021-07-29T14:10:12Z2021-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPINTO, Bráulio Henrique Orion Uchôa Veloso. Robust RSSI-based indoor positioning system using k-means clustering and Bayesian estimation. 2021. 40 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2021.https://tede.ufam.edu.br/handle/tede/8374enginfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2021-07-30T05:03:52Zoai:https://tede.ufam.edu.br/handle/:tede/8374Biblioteca Digital de Teses e Dissertaçõeshttp://200.129.163.131:8080/PUBhttp://200.129.163.131:8080/oai/requestddbc@ufam.edu.br||ddbc@ufam.edu.bropendoar:65922021-07-30T05:03:52Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)false |
dc.title.none.fl_str_mv |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation Sistema Robusto de Localização Interna usando Agrupamento K-means e Estimativa Bayesiana |
title |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation |
spellingShingle |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation Pinto, Bráulio Henrique Orion Uchôa Veloso Sistema de posicionamento interno Inferência bayesiana Sistema KLIP Banco de dados de impressão digital Bluetooth Low Energy CIÊNCIAS EXATAS E DA TERRA Bayesian estimation Indoor positioning K-means clustering Log-distance path loss model Rssi |
title_short |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation |
title_full |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation |
title_fullStr |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation |
title_full_unstemmed |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation |
title_sort |
Robust RSSI-based Indoor Positioning System using K-means Clustering and Bayesian Estimation |
author |
Pinto, Bráulio Henrique Orion Uchôa Veloso |
author_facet |
Pinto, Bráulio Henrique Orion Uchôa Veloso http://lattes.cnpq.br/2044598311458637 https://orcid.org/0000-0001-8885-5609 |
author_role |
author |
author2 |
http://lattes.cnpq.br/2044598311458637 https://orcid.org/0000-0001-8885-5609 |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Oliveira, Horácio Antonio Braga Fernandes de http://lattes.cnpq.br/9314744999783676 Pazzi, Richard Werner * Barreto, Raimundo da Silva http://lattes.cnpq.br/1132672107627968 |
dc.contributor.author.fl_str_mv |
Pinto, Bráulio Henrique Orion Uchôa Veloso http://lattes.cnpq.br/2044598311458637 https://orcid.org/0000-0001-8885-5609 |
dc.subject.por.fl_str_mv |
Sistema de posicionamento interno Inferência bayesiana Sistema KLIP Banco de dados de impressão digital Bluetooth Low Energy CIÊNCIAS EXATAS E DA TERRA Bayesian estimation Indoor positioning K-means clustering Log-distance path loss model Rssi |
topic |
Sistema de posicionamento interno Inferência bayesiana Sistema KLIP Banco de dados de impressão digital Bluetooth Low Energy CIÊNCIAS EXATAS E DA TERRA Bayesian estimation Indoor positioning K-means clustering Log-distance path loss model Rssi |
description |
This work proposes a new indoor positioning system, named KLIP, that uses the K-means clustering algorithm to split the environment into different sets of log-distance propagation models in order to better characterize the indoor environment and further improve the position estimation using Bayesian inference. The proposed method is validated in a large-scale, real-world scenario composed of Bluetooth Low Energy (BLE)-based devices. It is demonstrated, throughout the work, that the addition of location information of training points to the received signal strength indicator (RSSI) as an attribute for the clustering step improves the positioning accuracy. Moreover, the obtained results show that the solution outperforms the naive Bayesian estimation up to 12% – regarding the positioning accuracy – and the broadly deployed kNN for reduced training dataset size – regarding both accuracy and online processing time. In this sense, KLIP proves to be an efficient and scalable alternative when both site-survey effort and energy consumption constraints must be taken into account. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-29T14:10:12Z 2021-07-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
PINTO, Bráulio Henrique Orion Uchôa Veloso. Robust RSSI-based indoor positioning system using k-means clustering and Bayesian estimation. 2021. 40 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2021. https://tede.ufam.edu.br/handle/tede/8374 |
identifier_str_mv |
PINTO, Bráulio Henrique Orion Uchôa Veloso. Robust RSSI-based indoor positioning system using k-means clustering and Bayesian estimation. 2021. 40 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2021. |
url |
https://tede.ufam.edu.br/handle/tede/8374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Amazonas Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
publisher.none.fl_str_mv |
Universidade Federal do Amazonas Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFAM instname:Universidade Federal do Amazonas (UFAM) instacron:UFAM |
instname_str |
Universidade Federal do Amazonas (UFAM) |
instacron_str |
UFAM |
institution |
UFAM |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFAM |
collection |
Biblioteca Digital de Teses e Dissertações da UFAM |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM) |
repository.mail.fl_str_mv |
ddbc@ufam.edu.br||ddbc@ufam.edu.br |
_version_ |
1809732045159530496 |