Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system

Detalhes bibliográficos
Autor(a) principal: Magalhães, R. S.
Data de Publicação: 2011
Outros Autores: Fontes, C. H. O., Almeida, Luiz Alberto Luz de, Embiruçu, Marcelo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://www.repositorio.ufba.br/ri/handle/ri/5127
Resumo: Texto completo: acesso restrito. p.5138–5150
id UFBA-2_5ca2e1be51d4ef09480ba55bc37b515b
oai_identifier_str oai:repositorio.ufba.br:ri/5127
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Magalhães, R. S.Fontes, C. H. O.Almeida, Luiz Alberto Luz deEmbiruçu, MarceloMagalhães, R. S.Fontes, C. H. O.Almeida, Luiz Alberto Luz deEmbiruçu, Marcelo2012-01-11T17:06:08Z2012-01-11T17:06:08Z2011http://www.repositorio.ufba.br/ri/handle/ri/5127v. 330, n.21Texto completo: acesso restrito. p.5138–5150Acoustic noise in industrial areas, typically generated by compressors and vacuum pumps, may be mitigated by the combined use of passive and active noise control strategies. Despite its widespread use, the traditional Active Noise Control (ANC) technique requires error feedback and has been proven to be effective only within a small spatial region. When the movement of human ears is required within a large region and error feedback is difficult to be accomplished, new cancelling strategies have to be devised to achieve acceptable levels of spatial coverage. In the pursuit of this goal, this paper proposes a vibroacustic model to predict noise radiated from machinery. The model output is the sound signal of the noise at a given point inside a closed room. The two model inputs are the vibration signal at the noise source and the spatial coordinates of the intended point. Experimental output data were measured at several points inside a region defined by a solid rectangle. A fixed-order ARX model was chosen (AutoRegressive with eXogenous input), and for each spatial point and its corresponding pair of input–output signals, a set of parameter values was estimated. To integrate all these models into a single one, a neural network was employed to associate or approximate each set of parameters to its spatial coordinates. With this approach, the total number of parameters is expected to be greatly reduced, when considering the original separated models. Experimental results are presented and comparisons with other models are established on the basis of least-square error metrics and parsimony of parameters. A qualitative perspective for employing the proposed model in the design of large-region ANC strategies is also offered.Submitted by Rigaud Andréa (andrearigaud16@yahoo.com.br) on 2012-01-11T17:06:08Z No. of bitstreams: 1 __www.sciencedirect.com_....0-S0022460X11004093-main.pdf: 1150877 bytes, checksum: 28f0f4ee5cfb4706b9f1484b6224e530 (MD5)Made available in DSpace on 2012-01-11T17:06:08Z (GMT). No. of bitstreams: 1 __www.sciencedirect.com_....0-S0022460X11004093-main.pdf: 1150877 bytes, checksum: 28f0f4ee5cfb4706b9f1484b6224e530 (MD5) Previous issue date: 2011-10-10http://dx.doi.org/10.1016/j.jsv.2011.05.024reponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAIdentification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic systemJournal of Sound and VibrationArtigo de Periódicoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionenginfo:eu-repo/semantics/openAccessORIGINAL__www.sciencedirect.com_....0-S0022460X11004093-main.pdf__www.sciencedirect.com_....0-S0022460X11004093-main.pdfapplication/pdf1150877https://repositorio.ufba.br/bitstream/ri/5127/1/__www.sciencedirect.com_....0-S0022460X11004093-main.pdf28f0f4ee5cfb4706b9f1484b6224e530MD51LICENSElicense.txtlicense.txttext/plain1762https://repositorio.ufba.br/bitstream/ri/5127/2/license.txt1b89a9a0548218172d7c829f87a0eab9MD52TEXT__www.sciencedirect.com_....0-S0022460X11004093-main.pdf.txt__www.sciencedirect.com_....0-S0022460X11004093-main.pdf.txtExtracted texttext/plain38501https://repositorio.ufba.br/bitstream/ri/5127/3/__www.sciencedirect.com_....0-S0022460X11004093-main.pdf.txt1b44a2cf18fc3a6ee7c55f79be983affMD53ri/51272022-10-18 20:02:33.709oai:repositorio.ufba.br:ri/5127VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIHJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBCgogICAgUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNz77+9byBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldQpyZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBjb25jZWRlIGFvClJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSBvIGRpcmVpdG8KZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHvv73vv71vLiBFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIAphdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIGNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4gCgogICAgUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgZGlzdHJpYnVp77+977+9bywgZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEgZW50ZW5kZSBxdWU6IAoKICAgIE1hbnRlbmRvIG9zICBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyAKZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIAppbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1h77+977+9ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gYXMgcmVzdHJp77+977+9ZXMgaW1wb3N0YXMgcGVsb3MgCmVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNh77+977+9ZXMgZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgCkFjZXNzbyBBYmVydG8sIG9zIGRlcO+/vXNpdG9zIGNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gCm9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudO+/vW0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBwb2RlIHNlciBhY2VpdG8gcGVsbyAKYXV0b3IsIGRldGVudG9yZXMgZGUgZGlyZWl0b3MgZS9vdSB0ZXJjZWlyb3MgYW1wYXJhZG9zIHBlbGEgCnVuaXZlcnNpZGFkZS4gRGV2aWRvIGFvcyBkaWZlcmVudGVzIHByb2Nlc3NvcyBwZWxvIHF1YWwgYSBzdWJtaXNz77+9byAKcG9kZSBvY29ycmVyLCBvIHJlcG9zaXTvv71yaW8gcGVybWl0ZSBhIGFjZWl0Ye+/ve+/vW8gZGEgbGljZW7vv71hIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnvv73vv71vLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-10-18T23:02:33Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
dc.title.alternative.pt_BR.fl_str_mv Journal of Sound and Vibration
title Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
spellingShingle Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
Magalhães, R. S.
title_short Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
title_full Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
title_fullStr Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
title_full_unstemmed Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
title_sort Identification of hybrid ARX-neural network models for three-dimensional simulation of a vibroacoustic system
author Magalhães, R. S.
author_facet Magalhães, R. S.
Fontes, C. H. O.
Almeida, Luiz Alberto Luz de
Embiruçu, Marcelo
author_role author
author2 Fontes, C. H. O.
Almeida, Luiz Alberto Luz de
Embiruçu, Marcelo
author2_role author
author
author
dc.contributor.author.fl_str_mv Magalhães, R. S.
Fontes, C. H. O.
Almeida, Luiz Alberto Luz de
Embiruçu, Marcelo
Magalhães, R. S.
Fontes, C. H. O.
Almeida, Luiz Alberto Luz de
Embiruçu, Marcelo
description Texto completo: acesso restrito. p.5138–5150
publishDate 2011
dc.date.issued.fl_str_mv 2011
dc.date.accessioned.fl_str_mv 2012-01-11T17:06:08Z
dc.date.available.fl_str_mv 2012-01-11T17:06:08Z
dc.type.driver.fl_str_mv Artigo de Periódico
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.ufba.br/ri/handle/ri/5127
dc.identifier.number.pt_BR.fl_str_mv v. 330, n.21
url http://www.repositorio.ufba.br/ri/handle/ri/5127
identifier_str_mv v. 330, n.21
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.pt_BR.fl_str_mv http://dx.doi.org/10.1016/j.jsv.2011.05.024
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/5127/1/__www.sciencedirect.com_....0-S0022460X11004093-main.pdf
https://repositorio.ufba.br/bitstream/ri/5127/2/license.txt
https://repositorio.ufba.br/bitstream/ri/5127/3/__www.sciencedirect.com_....0-S0022460X11004093-main.pdf.txt
bitstream.checksum.fl_str_mv 28f0f4ee5cfb4706b9f1484b6224e530
1b89a9a0548218172d7c829f87a0eab9
1b44a2cf18fc3a6ee7c55f79be983aff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459392376373248