Pattern recognition of load profiles in managing electricity distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://www.repositorio.ufba.br/ri/handle/ri/8603 |
Resumo: | This works presents a method of selection, classification and clustering load curves (SCCL) which is able to identify a greater diversity of consumption patterns existing in the electricity distribution sector. The method was developed to estimate the features of a sample of load curves so as to identify the consumption behavior of a population of consumers. The algorithm comprises four steps that extract essential features of a load curve of residential users, seasonal and temporal profils in particular. The method was successfully implemented and tested in the context of an energy efficiency program developed by a company associated to the electricity distribution sector (Electric Company of Maranhão, Brazil). This program comprised the analysis of the impact of replacing refrigerators in a universe of low-income consumers in some towns in the state of Maranhão (Brazil). Patterns of load profiles using the typing method developed were applied and the results were compared with a well known method of time series clustering already established in the literature, the Fuzzy C-Means (FCM). Based on the main features of a load profile, the analysis confirmed that the SCCL method was capable of identifying a greater diversity of patterns, demonstrating the potential of this method for better characterization of types of demand. This is an important aspect for the process of decision making in the energy distribution sector. Furthermore, a well known index (Silhouette index) was also adopted to quantify the level of uniformity within and between clusters. |
id |
UFBA-2_6aeaa7fe4601adce65f674f6e5a6c90b |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/8603 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Ferreira, Adonias Magdiel SilvaFontes, Cristiano Hora de OliveiraMaranbio, Jorge Eduardo SotoCavalcante, Carlos Arthur Mattos TeixeiraFerreira, Adonias Magdiel SilvaFontes, Cristiano Hora de OliveiraMaranbio, Jorge Eduardo SotoCavalcante, Carlos Arthur Mattos Teixeira2013-02-21T13:29:42Z2013-02-21T13:29:42Z2013-02-212217-2661http://www.repositorio.ufba.br/ri/handle/ri/8603This works presents a method of selection, classification and clustering load curves (SCCL) which is able to identify a greater diversity of consumption patterns existing in the electricity distribution sector. The method was developed to estimate the features of a sample of load curves so as to identify the consumption behavior of a population of consumers. The algorithm comprises four steps that extract essential features of a load curve of residential users, seasonal and temporal profils in particular. The method was successfully implemented and tested in the context of an energy efficiency program developed by a company associated to the electricity distribution sector (Electric Company of Maranhão, Brazil). This program comprised the analysis of the impact of replacing refrigerators in a universe of low-income consumers in some towns in the state of Maranhão (Brazil). Patterns of load profiles using the typing method developed were applied and the results were compared with a well known method of time series clustering already established in the literature, the Fuzzy C-Means (FCM). Based on the main features of a load profile, the analysis confirmed that the SCCL method was capable of identifying a greater diversity of patterns, demonstrating the potential of this method for better characterization of types of demand. This is an important aspect for the process of decision making in the energy distribution sector. Furthermore, a well known index (Silhouette index) was also adopted to quantify the level of uniformity within and between clusters.Submitted by Cristiano Fontes (cfontes@ufba.br) on 2013-02-20T14:42:15Z No. of bitstreams: 1 PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx: 109749 bytes, checksum: 4258f0aaf3f2a2d85bcd5add781737d9 (MD5)Approved for entry into archive by Fatima Cleômenis Botelho Maria (botelho@ufba.br) on 2013-02-21T13:29:42Z (GMT) No. of bitstreams: 1 PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx: 109749 bytes, checksum: 4258f0aaf3f2a2d85bcd5add781737d9 (MD5)Made available in DSpace on 2013-02-21T13:29:42Z (GMT). No. of bitstreams: 1 PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx: 109749 bytes, checksum: 4258f0aaf3f2a2d85bcd5add781737d9 (MD5)BOLSA DE ESTUDOS - DOUTORADO (CAPES-DS)International Journal of Industrial Engineering and Managementhttp://www.iim.ftn.uns.ac.rs/ijiem_journal.phpreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBATyping load profilesclusteringelectricity sectorPattern recognition of load profiles in managing electricity distributioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleenginfo:eu-repo/semantics/openAccessORIGINALPAPER_18_ICIEOM_SUBMITTED_IJIEM.docxPAPER_18_ICIEOM_SUBMITTED_IJIEM.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document109749https://repositorio.ufba.br/bitstream/ri/8603/1/PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx4258f0aaf3f2a2d85bcd5add781737d9MD51LICENSElicense.txtlicense.txttext/plain1762https://repositorio.ufba.br/bitstream/ri/8603/2/license.txt1b89a9a0548218172d7c829f87a0eab9MD52ri/86032022-07-05 14:03:01.161oai:repositorio.ufba.br:ri/8603VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIHJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBCgogICAgUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNz77+9byBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldQpyZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBjb25jZWRlIGFvClJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSBvIGRpcmVpdG8KZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHvv73vv71vLiBFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIAphdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIGNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4gCgogICAgUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgZGlzdHJpYnVp77+977+9bywgZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEgZW50ZW5kZSBxdWU6IAoKICAgIE1hbnRlbmRvIG9zICBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyAKZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIAppbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1h77+977+9ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gYXMgcmVzdHJp77+977+9ZXMgaW1wb3N0YXMgcGVsb3MgCmVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNh77+977+9ZXMgZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgCkFjZXNzbyBBYmVydG8sIG9zIGRlcO+/vXNpdG9zIGNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gCm9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudO+/vW0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBwb2RlIHNlciBhY2VpdG8gcGVsbyAKYXV0b3IsIGRldGVudG9yZXMgZGUgZGlyZWl0b3MgZS9vdSB0ZXJjZWlyb3MgYW1wYXJhZG9zIHBlbGEgCnVuaXZlcnNpZGFkZS4gRGV2aWRvIGFvcyBkaWZlcmVudGVzIHByb2Nlc3NvcyBwZWxvIHF1YWwgYSBzdWJtaXNz77+9byAKcG9kZSBvY29ycmVyLCBvIHJlcG9zaXTvv71yaW8gcGVybWl0ZSBhIGFjZWl0Ye+/ve+/vW8gZGEgbGljZW7vv71hIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnvv73vv71vLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:03:01Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
Pattern recognition of load profiles in managing electricity distribution |
title |
Pattern recognition of load profiles in managing electricity distribution |
spellingShingle |
Pattern recognition of load profiles in managing electricity distribution Ferreira, Adonias Magdiel Silva Typing load profiles clustering electricity sector |
title_short |
Pattern recognition of load profiles in managing electricity distribution |
title_full |
Pattern recognition of load profiles in managing electricity distribution |
title_fullStr |
Pattern recognition of load profiles in managing electricity distribution |
title_full_unstemmed |
Pattern recognition of load profiles in managing electricity distribution |
title_sort |
Pattern recognition of load profiles in managing electricity distribution |
author |
Ferreira, Adonias Magdiel Silva |
author_facet |
Ferreira, Adonias Magdiel Silva Fontes, Cristiano Hora de Oliveira Maranbio, Jorge Eduardo Soto Cavalcante, Carlos Arthur Mattos Teixeira |
author_role |
author |
author2 |
Fontes, Cristiano Hora de Oliveira Maranbio, Jorge Eduardo Soto Cavalcante, Carlos Arthur Mattos Teixeira |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ferreira, Adonias Magdiel Silva Fontes, Cristiano Hora de Oliveira Maranbio, Jorge Eduardo Soto Cavalcante, Carlos Arthur Mattos Teixeira Ferreira, Adonias Magdiel Silva Fontes, Cristiano Hora de Oliveira Maranbio, Jorge Eduardo Soto Cavalcante, Carlos Arthur Mattos Teixeira |
dc.subject.por.fl_str_mv |
Typing load profiles clustering electricity sector |
topic |
Typing load profiles clustering electricity sector |
description |
This works presents a method of selection, classification and clustering load curves (SCCL) which is able to identify a greater diversity of consumption patterns existing in the electricity distribution sector. The method was developed to estimate the features of a sample of load curves so as to identify the consumption behavior of a population of consumers. The algorithm comprises four steps that extract essential features of a load curve of residential users, seasonal and temporal profils in particular. The method was successfully implemented and tested in the context of an energy efficiency program developed by a company associated to the electricity distribution sector (Electric Company of Maranhão, Brazil). This program comprised the analysis of the impact of replacing refrigerators in a universe of low-income consumers in some towns in the state of Maranhão (Brazil). Patterns of load profiles using the typing method developed were applied and the results were compared with a well known method of time series clustering already established in the literature, the Fuzzy C-Means (FCM). Based on the main features of a load profile, the analysis confirmed that the SCCL method was capable of identifying a greater diversity of patterns, demonstrating the potential of this method for better characterization of types of demand. This is an important aspect for the process of decision making in the energy distribution sector. Furthermore, a well known index (Silhouette index) was also adopted to quantify the level of uniformity within and between clusters. |
publishDate |
2013 |
dc.date.accessioned.fl_str_mv |
2013-02-21T13:29:42Z |
dc.date.available.fl_str_mv |
2013-02-21T13:29:42Z |
dc.date.issued.fl_str_mv |
2013-02-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufba.br/ri/handle/ri/8603 |
dc.identifier.issn.none.fl_str_mv |
2217-2661 |
identifier_str_mv |
2217-2661 |
url |
http://www.repositorio.ufba.br/ri/handle/ri/8603 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.pt_BR.fl_str_mv |
http://www.iim.ftn.uns.ac.rs/ijiem_journal.php |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/8603/1/PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx https://repositorio.ufba.br/bitstream/ri/8603/2/license.txt |
bitstream.checksum.fl_str_mv |
4258f0aaf3f2a2d85bcd5add781737d9 1b89a9a0548218172d7c829f87a0eab9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459421502668800 |