Pattern recognition of load profiles in managing electricity distribution

Detalhes bibliográficos
Autor(a) principal: Ferreira, Adonias Magdiel Silva
Data de Publicação: 2013
Outros Autores: Fontes, Cristiano Hora de Oliveira, Maranbio, Jorge Eduardo Soto, Cavalcante, Carlos Arthur Mattos Teixeira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://www.repositorio.ufba.br/ri/handle/ri/8603
Resumo: This works presents a method of selection, classification and clustering load curves (SCCL) which is able to identify a greater diversity of consumption patterns existing in the electricity distribution sector. The method was developed to estimate the features of a sample of load curves so as to identify the consumption behavior of a population of consumers. The algorithm comprises four steps that extract essential features of a load curve of residential users, seasonal and temporal profils in particular. The method was successfully implemented and tested in the context of an energy efficiency program developed by a company associated to the electricity distribution sector (Electric Company of Maranhão, Brazil). This program comprised the analysis of the impact of replacing refrigerators in a universe of low-income consumers in some towns in the state of Maranhão (Brazil). Patterns of load profiles using the typing method developed were applied and the results were compared with a well known method of time series clustering already established in the literature, the Fuzzy C-Means (FCM). Based on the main features of a load profile, the analysis confirmed that the SCCL method was capable of identifying a greater diversity of patterns, demonstrating the potential of this method for better characterization of types of demand. This is an important aspect for the process of decision making in the energy distribution sector. Furthermore, a well known index (Silhouette index) was also adopted to quantify the level of uniformity within and between clusters.
id UFBA-2_6aeaa7fe4601adce65f674f6e5a6c90b
oai_identifier_str oai:repositorio.ufba.br:ri/8603
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Ferreira, Adonias Magdiel SilvaFontes, Cristiano Hora de OliveiraMaranbio, Jorge Eduardo SotoCavalcante, Carlos Arthur Mattos TeixeiraFerreira, Adonias Magdiel SilvaFontes, Cristiano Hora de OliveiraMaranbio, Jorge Eduardo SotoCavalcante, Carlos Arthur Mattos Teixeira2013-02-21T13:29:42Z2013-02-21T13:29:42Z2013-02-212217-2661http://www.repositorio.ufba.br/ri/handle/ri/8603This works presents a method of selection, classification and clustering load curves (SCCL) which is able to identify a greater diversity of consumption patterns existing in the electricity distribution sector. The method was developed to estimate the features of a sample of load curves so as to identify the consumption behavior of a population of consumers. The algorithm comprises four steps that extract essential features of a load curve of residential users, seasonal and temporal profils in particular. The method was successfully implemented and tested in the context of an energy efficiency program developed by a company associated to the electricity distribution sector (Electric Company of Maranhão, Brazil). This program comprised the analysis of the impact of replacing refrigerators in a universe of low-income consumers in some towns in the state of Maranhão (Brazil). Patterns of load profiles using the typing method developed were applied and the results were compared with a well known method of time series clustering already established in the literature, the Fuzzy C-Means (FCM). Based on the main features of a load profile, the analysis confirmed that the SCCL method was capable of identifying a greater diversity of patterns, demonstrating the potential of this method for better characterization of types of demand. This is an important aspect for the process of decision making in the energy distribution sector. Furthermore, a well known index (Silhouette index) was also adopted to quantify the level of uniformity within and between clusters.Submitted by Cristiano Fontes (cfontes@ufba.br) on 2013-02-20T14:42:15Z No. of bitstreams: 1 PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx: 109749 bytes, checksum: 4258f0aaf3f2a2d85bcd5add781737d9 (MD5)Approved for entry into archive by Fatima Cleômenis Botelho Maria (botelho@ufba.br) on 2013-02-21T13:29:42Z (GMT) No. of bitstreams: 1 PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx: 109749 bytes, checksum: 4258f0aaf3f2a2d85bcd5add781737d9 (MD5)Made available in DSpace on 2013-02-21T13:29:42Z (GMT). No. of bitstreams: 1 PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx: 109749 bytes, checksum: 4258f0aaf3f2a2d85bcd5add781737d9 (MD5)BOLSA DE ESTUDOS - DOUTORADO (CAPES-DS)International Journal of Industrial Engineering and Managementhttp://www.iim.ftn.uns.ac.rs/ijiem_journal.phpreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBATyping load profilesclusteringelectricity sectorPattern recognition of load profiles in managing electricity distributioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleenginfo:eu-repo/semantics/openAccessORIGINALPAPER_18_ICIEOM_SUBMITTED_IJIEM.docxPAPER_18_ICIEOM_SUBMITTED_IJIEM.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document109749https://repositorio.ufba.br/bitstream/ri/8603/1/PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx4258f0aaf3f2a2d85bcd5add781737d9MD51LICENSElicense.txtlicense.txttext/plain1762https://repositorio.ufba.br/bitstream/ri/8603/2/license.txt1b89a9a0548218172d7c829f87a0eab9MD52ri/86032022-07-05 14:03:01.161oai:repositorio.ufba.br:ri/8603VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIHJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBCgogICAgUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNz77+9byBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldQpyZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBjb25jZWRlIGFvClJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSBvIGRpcmVpdG8KZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHvv73vv71vLiBFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIAphdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIGNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4gCgogICAgUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgZGlzdHJpYnVp77+977+9bywgZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEgZW50ZW5kZSBxdWU6IAoKICAgIE1hbnRlbmRvIG9zICBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyAKZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIAppbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1h77+977+9ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gYXMgcmVzdHJp77+977+9ZXMgaW1wb3N0YXMgcGVsb3MgCmVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNh77+977+9ZXMgZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgCkFjZXNzbyBBYmVydG8sIG9zIGRlcO+/vXNpdG9zIGNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gCm9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudO+/vW0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7vv71hLCBwb2RlIHNlciBhY2VpdG8gcGVsbyAKYXV0b3IsIGRldGVudG9yZXMgZGUgZGlyZWl0b3MgZS9vdSB0ZXJjZWlyb3MgYW1wYXJhZG9zIHBlbGEgCnVuaXZlcnNpZGFkZS4gRGV2aWRvIGFvcyBkaWZlcmVudGVzIHByb2Nlc3NvcyBwZWxvIHF1YWwgYSBzdWJtaXNz77+9byAKcG9kZSBvY29ycmVyLCBvIHJlcG9zaXTvv71yaW8gcGVybWl0ZSBhIGFjZWl0Ye+/ve+/vW8gZGEgbGljZW7vv71hIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnvv73vv71vLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:03:01Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv Pattern recognition of load profiles in managing electricity distribution
title Pattern recognition of load profiles in managing electricity distribution
spellingShingle Pattern recognition of load profiles in managing electricity distribution
Ferreira, Adonias Magdiel Silva
Typing load profiles
clustering
electricity sector
title_short Pattern recognition of load profiles in managing electricity distribution
title_full Pattern recognition of load profiles in managing electricity distribution
title_fullStr Pattern recognition of load profiles in managing electricity distribution
title_full_unstemmed Pattern recognition of load profiles in managing electricity distribution
title_sort Pattern recognition of load profiles in managing electricity distribution
author Ferreira, Adonias Magdiel Silva
author_facet Ferreira, Adonias Magdiel Silva
Fontes, Cristiano Hora de Oliveira
Maranbio, Jorge Eduardo Soto
Cavalcante, Carlos Arthur Mattos Teixeira
author_role author
author2 Fontes, Cristiano Hora de Oliveira
Maranbio, Jorge Eduardo Soto
Cavalcante, Carlos Arthur Mattos Teixeira
author2_role author
author
author
dc.contributor.author.fl_str_mv Ferreira, Adonias Magdiel Silva
Fontes, Cristiano Hora de Oliveira
Maranbio, Jorge Eduardo Soto
Cavalcante, Carlos Arthur Mattos Teixeira
Ferreira, Adonias Magdiel Silva
Fontes, Cristiano Hora de Oliveira
Maranbio, Jorge Eduardo Soto
Cavalcante, Carlos Arthur Mattos Teixeira
dc.subject.por.fl_str_mv Typing load profiles
clustering
electricity sector
topic Typing load profiles
clustering
electricity sector
description This works presents a method of selection, classification and clustering load curves (SCCL) which is able to identify a greater diversity of consumption patterns existing in the electricity distribution sector. The method was developed to estimate the features of a sample of load curves so as to identify the consumption behavior of a population of consumers. The algorithm comprises four steps that extract essential features of a load curve of residential users, seasonal and temporal profils in particular. The method was successfully implemented and tested in the context of an energy efficiency program developed by a company associated to the electricity distribution sector (Electric Company of Maranhão, Brazil). This program comprised the analysis of the impact of replacing refrigerators in a universe of low-income consumers in some towns in the state of Maranhão (Brazil). Patterns of load profiles using the typing method developed were applied and the results were compared with a well known method of time series clustering already established in the literature, the Fuzzy C-Means (FCM). Based on the main features of a load profile, the analysis confirmed that the SCCL method was capable of identifying a greater diversity of patterns, demonstrating the potential of this method for better characterization of types of demand. This is an important aspect for the process of decision making in the energy distribution sector. Furthermore, a well known index (Silhouette index) was also adopted to quantify the level of uniformity within and between clusters.
publishDate 2013
dc.date.accessioned.fl_str_mv 2013-02-21T13:29:42Z
dc.date.available.fl_str_mv 2013-02-21T13:29:42Z
dc.date.issued.fl_str_mv 2013-02-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.ufba.br/ri/handle/ri/8603
dc.identifier.issn.none.fl_str_mv 2217-2661
identifier_str_mv 2217-2661
url http://www.repositorio.ufba.br/ri/handle/ri/8603
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.pt_BR.fl_str_mv http://www.iim.ftn.uns.ac.rs/ijiem_journal.php
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/8603/1/PAPER_18_ICIEOM_SUBMITTED_IJIEM.docx
https://repositorio.ufba.br/bitstream/ri/8603/2/license.txt
bitstream.checksum.fl_str_mv 4258f0aaf3f2a2d85bcd5add781737d9
1b89a9a0548218172d7c829f87a0eab9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459421502668800