Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | https://repositorio.ufba.br/handle/ri/35585 |
Resumo: | Após eclodirem em ambiente terrestre, as tartarugas marinhas precisam alcançar o habitat marinho. Entretanto, como os filhotes se orientam para encontrar habitats adequados para desenvolvimento, estes que podem variar entre as espécies, ainda se configura como uma lacuna. Apesar das tartarugas adultas apresentarem habilidades quimiossensoriais para orientação em ambiente marinho, é possível que esse mecanismo seja a base da primeira migração de filhotes pós-eclosão. Entretanto, a quimiorrecepção é frequentemente prejudicada pela poluição química. Por exemplo, os filhotes que atraversam as águas costeiras podem encontrar aguas poluídas (química ou biologicamente) como resultado das atividades humanas (e.g., esgotamento doméstico urbano). Em uma espécie de tartaruga marinha (Caretta caretta), determinamos i) o papel da quimiorrecepção na escolha do habitat marinho (costeiro e oceânico), e ii) se a poluição química costeira interfere nesse mecanismo sensorial. Usando um tanque “Y”, que possibilita apresentar dois fluxos de água distintos concomitantes, as tartarugas estiveram livres para nadar em ambos os fluxos por um período total de 10 minutos. No primeiro experimento, os filhotes permaneceram quase 70% do tempo na água oceânica. No segundo experimento, quando os filhotes tiveram que escolher entre água costeira e água poluída (coletada em uma praia com escoamento doméstico), não houve preferência pelo fluxo de água costeira ou costeira poluída. Contudo, essas evidências demostram o papel da quimiorrecepção na seleção de habitat e a falta de reconhecimento de condições potencialmente prejudiciais (poluição) o que poderia comprometer a aptidão, por exemplo, causando maior mortalidade por contaminação. |
id |
UFBA-2_8a669df65c8d3e52cee0459eb4f37231 |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/35585 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
2022-06-24T23:33:19Z2022-06-24T23:33:19Z2020-01-15https://repositorio.ufba.br/handle/ri/35585Após eclodirem em ambiente terrestre, as tartarugas marinhas precisam alcançar o habitat marinho. Entretanto, como os filhotes se orientam para encontrar habitats adequados para desenvolvimento, estes que podem variar entre as espécies, ainda se configura como uma lacuna. Apesar das tartarugas adultas apresentarem habilidades quimiossensoriais para orientação em ambiente marinho, é possível que esse mecanismo seja a base da primeira migração de filhotes pós-eclosão. Entretanto, a quimiorrecepção é frequentemente prejudicada pela poluição química. Por exemplo, os filhotes que atraversam as águas costeiras podem encontrar aguas poluídas (química ou biologicamente) como resultado das atividades humanas (e.g., esgotamento doméstico urbano). Em uma espécie de tartaruga marinha (Caretta caretta), determinamos i) o papel da quimiorrecepção na escolha do habitat marinho (costeiro e oceânico), e ii) se a poluição química costeira interfere nesse mecanismo sensorial. Usando um tanque “Y”, que possibilita apresentar dois fluxos de água distintos concomitantes, as tartarugas estiveram livres para nadar em ambos os fluxos por um período total de 10 minutos. No primeiro experimento, os filhotes permaneceram quase 70% do tempo na água oceânica. No segundo experimento, quando os filhotes tiveram que escolher entre água costeira e água poluída (coletada em uma praia com escoamento doméstico), não houve preferência pelo fluxo de água costeira ou costeira poluída. Contudo, essas evidências demostram o papel da quimiorrecepção na seleção de habitat e a falta de reconhecimento de condições potencialmente prejudiciais (poluição) o que poderia comprometer a aptidão, por exemplo, causando maior mortalidade por contaminação.After hatching on land, hatchling sea turtles need to reach the marine realm. However, whether hatchlings orient themselves to reach a preferred habitat at sea, which may vary among species from coastal (inshore) to oceanic (offshore), and whether this process is mediated by chemoreception, is almost entirely unknown. Given that adult turtles may rely on chemoreception for guidance at sea, it is possible that hatchlings’ first migration is likewise based on this sensory mechanism. However, chemoreception is often impaired by chemical pollution, which may lead to exposure to contaminants. In one endangered sea turtles species, Caretta caretta, based on chemoreception, we determined whether this species preferred chemical cues from two distinct habitats (coastal or oceanic), and whether coastal chemical pollution is avoided. In a flume, we concomitantly presented distinct seawater flows (coastal vs. oceanic [Exp. 1] and coastal vs. polluted-coastal [Exp. 2]). Hatchlings had free access to these flows for a period of 10 min. In the first experiment, hatchlings spent significantly more time in oceanic seawater flow, with nearly 70% of the time. In the second experiment, when hatchlings had to choose between coastal and polluted-coastal water (collected from a urban sewage outlet), these did not distinguish between flows, suggesting that this polluted water was not recognized and avoided. Thus, it appears that hatchlings are abled to recognize between distinct habitats based on chemical cues, but not to evolutively more recent cues associated with anthropogenic chemical pollution, suggesting a propensity to contamination that may put turtle populations at risk.Submitted by Gabriel Oliveira (gabrielsoeirobio@gmail.com) on 2022-06-20T16:03:32Z No. of bitstreams: 1 Dissertação - Gabriel Soeiro.pdf: 1719490 bytes, checksum: fd9e762dbffe658e9d3798f004b40643 (MD5)Approved for entry into archive by Setor de Periódicos (per_macedocosta@ufba.br) on 2022-06-24T23:33:19Z (GMT) No. of bitstreams: 1 Dissertação - Gabriel Soeiro.pdf: 1719490 bytes, checksum: fd9e762dbffe658e9d3798f004b40643 (MD5)Made available in DSpace on 2022-06-24T23:33:19Z (GMT). No. of bitstreams: 1 Dissertação - Gabriel Soeiro.pdf: 1719490 bytes, checksum: fd9e762dbffe658e9d3798f004b40643 (MD5) Previous issue date: 2020-01-15CAPESporUniversidade Federal da BahiaPrograma de Pós-Graduação em Ecologia:TAV(antigo Programa de Pós em Ecologia e Biomonitoramento) UFBABrasilInstituto de Biologiasea turtlechemoreceptionhabitat selectionconservationpollutionCNPQ::CIENCIAS BIOLOGICAS::ECOLOGIA::ECOLOGIA TEORICATartaruga marinhaQuimiorrecepçãoHabitat - SeleçãoConservaçãoPoluição químicaSeleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758)Habitat Selection Based on Chemosensory Cues in Loggerhead Turtles Hatchlings (Caretta caretta Linnaeus, 1758)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisLeduc, Antoinehttps://orcid.org/ 0000-0002-8471-2114http://lattes.cnpq.br/8457333176497795Silva, Eduardo Mendes dahttp://lattes.cnpq.br/7294945499790680Leduc, Antoinehttps://orcid.org/ 0000-0002-8471-2114http://lattes.cnpq.br/8457333176497795Araújo, Cristiano Venícius de Matoshttps://orcid.org/ 0000-0003-1793-2966http://lattes.cnpq.br/8123137381169371Santos, Matilde Maria Moreirahttps://orcid.org/ 0000-0001-7067-5028http://lattes.cnpq.br/9649636182414081https://orcid.org/ 0000-0002-8501-1440http://lattes.cnpq.br/0029273289299709Oliveira, Gabriel Soeiro AlexandrinoAdams SM. 1976. The ecology of eelgrass, Zostera manna (L), fish communities. I. Structural analysis. J Exp Mar Biol Ecol. 22:269-291. Agardy MT. 1994. Advances in marine conservation: the role of marine protected areas. Trends Ecol Evol. 9:267-270. Al-Bahry SN, Mahmoud IY, Al-Zadjali M, Elshafie A, Al-Harthy A, Al-Alawi W. 2011. Antibiotic resistant bacteria as bio-indicator of polluted effluent in the green turtles, Chelonia mydas in Oman. Mar Environ Res. 71:139-144. Arianoutsou M. 1988. Assessing the impacts of human activities on nesting of loggerhead sea-turtles (Caretta Caretta) on Zakynthos island, western Greece. Environ Conserv J. 15:327-334. Aubret F, Shine R. 2008. Early experience influences both habitat choice and locomotor performance in tiger snakes. Am Nat. 171:524-531. Barth W, Hulek K, Peters C, Van de Ven A. 2015. Compact complex surfaces. Springer. 4. Bjorndal KA. 1997. Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA. Eds. The biology of sea turtles. Boca Raton. CRC Press.199–231. Bolten AB, Balazs GH. 1995. Biology of the early pelagic stage--the "lost year". In: Bjorndal KA. Eds. Biology and conservation of sea turtles. Revised edition. Smithsonian Institution Press. Washington D.C. USA. 579-581. Bolten AB. 2003a. Variation in sea turtle life history patterns: neritic versus oceanic developmental stages. In: Lutz PL, Musick JA, Wyneken J. Eds. The Biology of Sea turtles. Boca Raton. CRC Press. 2:243−257. Bolten AB. 2003b. Active swimmers-passive drifters: the oceanic juvenile stage of loggerheads in the Atlantic system. In: Bolten AB, Witherington B. Eds. Loggerhead sea turtles. Smithsonian Institution Press. Washington. 63–98. Boyle MC, Limpus CJ. 2008. The stomach contents of post-hatchling green and loggerhead sea turtles in the southwest Pacific: an insight into habitat association. Mar Biol. 155:233-241. Briffa M, de la Haye K, Munday PL. 2012. High CO2 and marine animal behavior: potential mechanisms and ecological consequences. Mar Pollut Bull. 64:1519–1528. Briscoe DK, Parker DM, Balazs GH, Kurita M, Saito T, Okamoto H, Crowder LB. 2016. Active dispersal in loggerhead sea turtles (Caretta caretta) during the ‘lost years’. Proc Biol Sci. 283:20160690. Brooker RM, Dixson DL. 2016. Assessing the role of olfactory cues in the early life history of coral reef fish: current methods and future directions. In: Muller-Schwarze D. 2012. Eds. Chemical signals in vertebrates. Springer Sci Bus Media.13:17-31. Brooker RM. 2019. Olfactory discrimination between chemical cues from coastal vegetation in two palaemonid shrimps, Palaemon vulgaris Say, 1818 and P. affinis H. Milne Edwards, 1837 (Decapoda: Caridea: Palaemonidae). J Crustacean Biol. 39:312-315. Brost B, Witherington B, Meylan A, Leone E, Ehrhart L, Bagley D. 2015. Sea turtle hatchling production from Florida (USA) beaches, 2002-2012, with recommendations for analyzing hatching success. Endanger Species Res. 27:53-68. Buckley FG, Buckley PA. 1980. Habitat Selection and Marine Birds. In: Burger J, Olla BL, Winn HE. Eds. Behavior of Marine Animals. Springer. Boston. MA. Byles RA. 1988. Behavior and ecology of sea turtles from Chesapeake Bay. Virginia. Camacho M, Luzardo OP, Boada LD, Jurado LFL, Medina M, Zumbado M, Orós J. 2013. Potential adverse health effects of persistent organic pollutants on sea turtles: evidences from a cross-sectional study on Cape Verde loggerhead sea turtles. Sci Total Environ. 458:283-289. Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, Aguilar A. 2005. Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar Biol. 147:583-591. Carr AF. 1962. Orientation problems in the high seas travel and terrestrial movements of marine turtles. Am Sci. 50:359-374. Carr A. 1965. The navigation of the green turtle. Sci Am. 212:78-87. Carr AF. 1987. Impact of nondegradable marine debris on the ecology and survival outlook of sea turtles. Mar Pollut Bull. 18:352-356. Carr MH. 1994. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecol. 75:1320-1333. Constantino MA, Salmon M. 2003. Role of chemical and visual cues in food recognition by leatherback posthatchlings (Dermochelys coriacea L). Zool. 106:173–181.doi: 10.1078/0944-2006-00114. Coppock E, Brochhagen T. 2013. Diagnosing truth, interactive sincerity, and depictive sincerity. In: Einstein A, Podolsky B, Rosen N. 1935. Eds. Semantics and Linguistic Theory. 358-375. Davis JM. 2008. Patterns of variation in the influence of natal experience on habitat choice. Q Rev Biol. 83:363-380. Deraniyagala PEP. 1930. The testudinata of Ceylon. Ceylon J. Sci. 16: 43-88. Deraniyagala PEP. 1939. The tetrapod reptiles of Ceylon. Testudinates and Crocodilians. Colombo Museum Natural History Series 1. Colombo. Ceylon. Diaz-Gil D, Haerter F, Falcinelli S, Ganapati S, Hettiarachchi GK, Simons JC, Eikermann-Haerter K. 2016. A novel strategy to reverse general anesthesia by scavenging with the acyclic cucurbit [n] uril-type molecular container calabadion 2. Anesthesiology: J Am Soc Anesthesia. 125:333-345. Dixson DL, Munday PL, Jones GP. 2010. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett. 13:68–75. Dixson DL, Jones G P, Munday PL, Pratchett MS, Srinivasan M, Planes S, Thorrold SR. 2011. Terrestrial chemical cues help coral reef fish larvae locate settlement habitat surrounding islands. Ecol Evol. 1:586-595. Dixson DL, Jennings AR, Atema J, Munday PL. 2014. Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Change Biol. 21:1454-1462. doi: 10.1111/gcb.12678. Doney SC. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Sci. 328:1512-1516. Donner SD, Kucharik CJ. 2008. Proceedings of the National Academy of Sciences. USA.105:4513-4518. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Geider RJ. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Sci. 320:893-897. Endres CS, Putman NF, Lohmann KJ. 2009. Perception of airborne odors by loggerhead sea turtles. J Exp Biol. 212:3823–3827. doi: 10.1242/jeb.033068. Endres CS, Lohmann KJ. 2012. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a possible mechanism for locating high productivity areas for foraging. J Exp. Biol. 215: 3535–3538. doi: 10.1242/jeb.073221. Endres CS, Putman NF, Ernst DA, Kurth JA, Lohmann CM, Lohmann KJ. 2016. Multi-modal homing in sea turtles: modeling dual use of geomagnetic and chemical cues in island-finding. Front Behav Neurosci.10:19. Fernandino G, Elliff C, Silva IR, Bittencourt AC. 2015. How many pellets are too many? The pellet pollution index as a tool to assess beach pollution by plastic resin pellets in Salvador, Bahia, Brazil. Revista de Gestão Costeira Integrada- J Coast Zone Manag.15:325-332. Fitzgerald WF, Lamborg CH, Hammerschmidt CR. 2007. Marine biogeochemical cycling of mercury. Chem Rev. 107:641-662. Frick MG, Williams KL, Bolten AB, Bjorndal KA, Martins HR. 2009. Foraging ecology of oceanic-stage loggerhead turtles Caretta caretta. Endang Species Res. 9:91–97. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Karl DM. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry. 70:153-226. Gaos AR, Lewison RL, Yañez IL, Wallace BP, Liles MJ, Nichols WJ, Seminoff JA. 2011. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles. Biol Lett. 8:54-56. Gibson RN, Ansell AD, Robb L. 1993. Seasonal and annual variations in abundance and species composition of fish and marocrustacean communities on a Scottish sandy beach. Mar Ecol Prog Ser. 98:89-105. Gibson RN. 1994. Impact of habitat quality and quantity on the recruitment of juvenile flatfish. Neth J Sea Res.32:191-206. Gouraguine A, Díaz-Gil C, Reñones O, Otegui DS, Palmer M, Hinz H, Moranta J. 2017. Behavioural response to detection of chemical stimuli of predation, feeding and schooling in a temperate juvenile fish. J Exp Mar Biol Ecol. 486:140-147. Gotceitas V, Brown JA. 1993. Substrate selection by juvenile Atlantic cod (Gadus morhua): effects of predation risk. Oecol. 93:31-37. Grassman MA, Owens DW, McVey JP, Marquez RM. 1984. Olfactory-based orientation in artificially imprinted sea turtles. Sci. 224: 83-84. Greif S, Siemers B. M. 2010. Innate recognition of water bodies in echolocating bats. Nat Commun. 1:107. Guillette LJ. 2000. Contaminant-induced endocrine disruption in wildlife. Growth Horm IGF Res. 10:45-50. Halfwerk W, Slabbekoorn H. 2015. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol Let. 11:20141051. Harasti D, Martin-Smith K, Gladstone W. 2014. Ontogenetic and sex-based differences in habitat preferences and site fidelity of White's seahorse Hippocampus whitei. J Fish Biol. 85:1413-1428. Hatase H, Takai N, Matsuzawa Y, Sakamoto W, Omuta K, Goto K, Fujiwara T. 2002a. Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar Ecol Prog Ser. 233:273-281. Hatase H, Matsuzawa Y, Sakamoto W, Baba N, Miyawaki I. 2002b. Pelagic habitat use of an adult Japanese male loggerhead turtle Caretta caretta examined by the Argos satellite system. Fish Sci. 68:945-947. Hawkes LA, Broderick AC, Godfrey MH, Godley BJ. 2009. Climate change and marine turtles. Endanger Species Res. 7:137-154. Hazlett B. 2011. Chemical cues and reducing the risk of predation. In: Breithaupt T, Thiel M. Eds. Communication in Crustaceans. Springer. New York. 355–370. Hoffman JI, Forcada J. 2012. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm Biol. 77:71-73. Holmes TH, McCormick MI. 2010. Size-selectivity of predatory reef fish on juvenile prey. Mar Ecol Prog Ser. 399:273-283. Ibáñez A., López P, Martín J. 2012. Discrimination of ‘conspecifics’ chemicals may allow Spanish terrapins to find better partners and avoid competitors. Anim Behav. 83:1107–1113. Immelman RFM. 1972. The history of libraries in South Africa. Give the people light: Essays in honour of Matthew Miller Stirling. 15-37. INEMA. Instituto do Meio Ambiente e Recursos Hídricos do Estado da Bahia. 2019. Boletim de Balneabilidade para Litoral de Salvador. Boletim nº 44/2019. INEMA. Bahia. Acesso em: 01/11/2019. IBM Corp. Released. 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Jacobsen HP, Stabell OB. 2004. Antipredator behaviour mediated by chemical cues: the role of conspecific alarm signalling and predator labelling in the avoidance response of a marine gastropod. Oikos. 104:43-50. Janz N, Söderlind L, Nylin S. 2009. No effect of larval experience on adult host preferences in Polygonia c‐album (Lepidoptera: Nymphalidae): on the persistence of Hopkins’host selection principle. Ecol Entomol. 34:50-57. Jones J. 2001. Habitat selection studies in avian ecology: A critical review. Auk. 118:556-562. Jones TT, Seminoff JA. 2013. Feeding Biology. In: Wyneken J, Lohmann KJ, Musick J. Eds. Sea turtle. 3:211–247. Kamil AC. 1988. Behavioral ecology and sensory biology. In: Atema J, Fay RR, Popper AN, Tavolga WN. Eds. Sensory biology of aquatic animals. Springer. New York. 189–201. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu Rev Mar Sci. 2:199-229. Keinath JA. 1993. Movements and behavior of wild and head-started sea turtles. PhD dissertation. College of William and Mary. Gloucester Point. VA. Kelly AE, Reuer MK, Goodkin NF, Lead EA. 2009. Concentrations and isotopes in corals and water near Bermuda. Earth Planet. Sci. Lett. 283:93-100. Kight CR, Swaddle JP. 2011. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett. 14:1052-1061. Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG, Pineda J. 2002. Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci. 70:309-340. Lack D. 1954. The natural regulation of animal numbers., Oxford, England. Clarendon Press. Lasley-Rasher RS, Yen J. 2012. Predation risk suppresses mating success and offspring production in the coastal marine copepod, Eurytemora herdmani. Limnol Oceanogr. 57:433-440. Lecchini D, Nakamura Y. 2013. Use of chemical cues by coral reef animal larvae for habitat selection. Aquat Biol. 19:231-238. Lecchini D, Dixson DL, Lecellier G, Roux N, Frédérich B, Besson M, Nakamura Y. 2016. Habitat selection by marine larvae in changing chemical environments. Mar Pollut Bull. 114: 210-217. Leduc AOHC, Munday PL, Brown GE, Ferrari MCO. 2013. Effects of acidification on olfactory mediated behavior in freshwater and marine ecosystems: a synthesis. Philos T R Soc B. 368:20120447. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Friedlingstein P. 2009. Trends in the sources and sinks of carbon dioxide. Nat Geosci. 2:831. Lewin J, Chen CH. 1973. Changes in the concentration of soluble and particulate iron in seawater enclosed in containers 1. Limnol Oceanogr. 18:590-596. Lohmann KJ, Lohmann CMF. 1994. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J Exp Biol. 194:23–32. Lohmann KJ, Lohmann CMF. 1996. Detection of magnetic field intensity by sea turtles. Nat. 380:59–61. doi: 10.1038/380059a0. Lohmann KJ, Lohmann CMF, Endres CS. 2008a. The sensory ecology of ocean navigation. J Exp Biol. 211:1719–1728. doi: 10.1242/jeb.015792. Lohmann KJ, Luschi P, Hays GC. 2008b. Goal navigation and island finding in sea turtles. J Exp Biol. 356:83–95. doi: 10.1016/j.jembe.2007.12.017. Lohmann KJ, Putman NF, Lohmann CMF. 2012. The magnetic map of hatchling loggerhead sea turtles. Current Opinion in Neurobiology. 22:336–342. doi: 10.1016/j.conb.2011.11.005. Lohmann K.J, Lohmann CMF, Rogers JR, Putman NF. 2013. Natal homing and imprinting in sea turtles. In: Wyneken J, Lohmann KJ, Musick J. Eds. Biology of Sea Turtles. Boca Raton CRC Press. 59–77. Lohmann KJ, Lohmann CMF. 2019. There and back again: natal homing by magnetic navigation in sea turtles and salmon. J Exp Biol. 222 (Suppl 1). jeb184077. Lutcavage EM, Lutz PL, Bossart GD, Hudson DM. 1997. Physiologic and clinicopathologic effects of crude oil on loggerhead sea turtles. Arch Environ Contam Toxicol. 28:417–22. Lutz P, Lutcavage M, Hudson D. 1986. Study of the effect of oil on marine turtles. In: Vargo S, Lutz PL, Odell DK, Van Vleet T, Bossart G. Eds. Physiological effects, Minerals Management Service Contract Number 114-12-0001-30063St. Petersburg, FL: Florida Inst. of Oceanography. Manríquez PH, Jara ME, Mardones ML, Navarro JM, Torres R, Lardies MA, Vargas CA, Duarte C, Widdicombe S, Salisbury J. 2013. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco). PLoS ONE. 8:68643. Manton M, Karr A, Ehrenfeld DW. 1972. Chemoreception in the migratory sea turtle, Chelonia mydas. Biol Bull. 143:184–195. doi: 10.2307/1540338. Marbry KE, Stamps JA. 2007. Dispersing brush mice prefer habitat like home. Proc Biol Sci. 275:543-548. McClellan CM, Read A J. 2007. Complexity and variation in loggerhead sea turtle life history. Biol Lett. 3:592-594. McHugh KA, Allen JB, Barleycorn AA, Wells RS. 2011. Natal philopatry, ranging behavior, and habitat selection of juvenile bottlenose dolphins in Sarasota Bay. Florida. J Mammal. 92:1298-1313. Menge BA, Sutherland JP. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat. 130:730-757. Meredith TL, Kajiura SM. 2010. Olfactory morphology and physiology of elasmobranchs. Eur J Exp Biol. 213:3449–3456. Morreale, SJ, Standora, EA. 1998. Early life stage ecology of sea turtles in northeastern US waters. NOAA Technical Memorandum. NMFS-SEFSC-413. Morreale SJ, Standora EA. 2005.Western North Atlantic waters: crucial developmental habitat for Kemp’s ridley and loggerhead sea turtles. Chelonian Conserv Bi. 4:872-882. Mrosovsky N. 1980. Thermal biology of sea turtles. Am Zool. 20:531-547. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB. 2009. Ocean acidification impairs olfactory discrimination of homing ability of a marine fish. PNAS USA. 106:1848–1852. Musick JA, Limpus CJ. 1997. Habitat utilization and migration in juvenile sea turtles. In: Lutz P, Musick JA. Eds. The biology of sea turtles. 1. ed. Boca Raton. CRC Press.137–163. Orians G. 1971. Ecological aspects of behavior. Avian Biology.1: 513-546. Orth RJ, Heck KL, Montfrans, J. 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries. 7:339-350. Parker DM, Cooke WJ, Balazs GH. 2003. Diet of oceanic loggerhead sea turtles (Caretta caretta) in the central North Pacific. Fish Bull. 103:142-152. Parra GJ, Corkeron PJ, Marsh H. 2006. Population sizes, site fidelity and residence patterns of Australian snubfin and Indo-Pacific humpback dolphins: Implications for conservation. Biol Conserv. 129:167-180. Pereira PMS. 2009. A sedimentação areno-lamosa do Baixo da Boca do Rio. Salvador. Bahia. Monografia. Universidade Federal da Bahia. Salvador. Pereira GG. 2010. Estudos dos principais impactos ambientais dos emissários submarinos. Monografia. Universidade Federal de Santa Catarina. Florianópolis. Pihl L, Isaksson I, Wennhage H, Moksnes PO. 1995. Recent increase of filamentous algae in shallow Swedish bays: effects on the community structure of epibenthic fauna and fish. Neth J Sea Res. 29:1-10. Polovina J, Uchida I, Balazs G, Howell EA, Parker D, Dutton P. 2006. The Kuroshio Extension Bifurcation Region: a pelagic hotspot for juvenile loggerhead sea turtles. Deep Sea Research Part II: Topical Studies in Oceanography. 53:326-339. Pough FH, Janis CM, Heiser JB. 2008. A vida dos vertebrados. São Paulo: Atheneu. Pritchard PC. 1997. Evolution, phylogeny, and current status. In: Lutz P, Musick JA. Eds. The biology of sea turtles. 1. ed. Boca Raton. CRC Press.137–163. Putman NF, Lohmann KJ. 2008. Compatibility of magnetic imprinting and secular variation. Curr Biol. 18:R596–R597. doi:10.1016/j.cub.2008.05.008. Putman NF, Endres CS, Lohmann CM, Lohmann KJ. 2011. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr Biol. 21:463–466. doi: 10.1016/j.cub.2011.01.057. Putman NF, Mansfield KL. 2015. Direct evidence of swimming demonstrates active dispersal in the sea turtle “lost years”. Curr Biol. 25:1221-1227. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J. 2017. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences. Reddy CM, Sstegeman JJ, Hahn ME. 2008. Organic pollutants: Presence and Effects in humans and marine animals. In: Walsh PJ, Smith SL, Solo-Gabriele H, Gerwick WH. Eds. Oceans and Human Health: Risks and Remedies from the Seas. MA. Burlington. Academic Press. 121–141. Rooker JR, Secor DH, Demetrio G, Kaufman AJ, Rios AB, Ticina V. 2007. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar Ecol Prog Ser. 368:231–239. Rosenzweig ML. 1981. A theory of habitat selection. Ecol. 62:327-335. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DW, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF. 2004. The oceanic sink for anthropogenic CO2. Sci. 305:367-371. Schroth AW, Crusius J, Sholkovitz ER, Bostick BC. 2009. Iron solubility driven by speciation in dust sources to the ocean. Nat Geosci. 2:337. Schwenk K. 2008. Comparative anatomy and physiology of chemical senses in nonavian aquatic reptiles. In: Thewissen JGM, Nummela S. Eds. Sensory Evolution on the Threshold. Adaptations in Secondarily Aquatic Vertebrates. Berkeley: University of California Press. 65–81. Sih A, Ferrari COM, Harris DJ. 2011. Evolution and behavioural responses to human‐induced rapid environmental change. Evol Appl. 4:367-387. Small C, Nicholls RJ. 2003. A global analysis of human settlement in coastal zones. J. Coast Res. 84-599. Snover AK, Amy K, Quay PD. 2000. Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane. Global Biogeochem Cy. 14:25-39. Solomon S, Manning M, Marquis M, Qin D. 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, Manning M, Marquis M, Qin D. Climate Change. Univ. Press. Cambridge.19–91. Southwood AL, Higgins BM, Swimmer Y, Brill RW. 2007. Chemoreception in loggerhead sea turtles: an assessment of the feasibility of using chemical deterrents to prevent sea turtle interactions with longline fishing gear. NOAA (Natl Ocean Atmos Adm) Tech Memo NMFS-PIFSC-10. Southwood AL, Fritsches K, Brill R., Swimmer Y. 2008. Sound, chemical and light detection in sea turtles and pelagic fishes: sensory-based approaches to bycatch reduction in longline fisheries. Endanger Species Res. 5:225–238. doi:10.3354/esr00097. Storelli MM, Marcotrigiano GO. 2003. Heavy metal residues in tissues of marine turtles. Mar Pollut Bull. 46:397-400. Storelli MM, Storelli A, D'addabbo R, Marano C, Bruno R, Marcotrigiano GO. (2005). Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: overview and evaluation. Environ Pollut. 135:163-170. Tidau S, Briffa M. 2019. Anthropogenic noise pollution reverses grouping behaviour in hermit crabs. Anim Behav. 151:113-120. Tuomainen U, Candolin U. 2011. Behavioural responses to human‐induced environmental change. Biol Rev. 86:640-657. Vitt LJ, Caldwell MW. 2009. Herpetology: an introductory biology of amphibians and reptiles. 3 ed. San Diego. Academic Press. Walker TA, Parmenter CJ. 1990. Absence of a pelagic phase in the life cycle of the flatback turtle. Natator depressus (Garman). J Biogeogr. 275-278. Walker TA. 1994. Post-hatchling dispersal of sea turtles. In: Proceedings of the Australian Marine Turtle Conservation Workshop. Queensland Australia. 79. Watson, JW, Epperly SP, Shah AK, Foster DG. 2005. Fishing methods to reduce sea turtle mortality associated with pelagic longlines. Can J Fish Aquat Sci. 62:965–981. doi:10.1139/f05-004. Werner EE, Gilliam JF. 1984. The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Sys. 15:393-425. Wheeler A. 1980. Fish-algal relations in temperate waters. In: Price JH, Irvine DEG, Farnham WF. The shore environment. London. Academy Press. 677-698. Witherington B. 2002. Ecology of neonate loggerhead turtles inhabiting lines of downwelling near a Gulf Stream front. Mar Biol. 140:843-853. Witherington BE, Hirama S, Hardy R. 2012. Young sea turtles of the pelagic Sargassum-dominated drift community: habitat use, population density, and threats. Mar Ecol Prog Ser. 463:1-22.reponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAinfo:eu-repo/semantics/openAccessORIGINALDissertação - Gabriel Soeiro.pdfDissertação - Gabriel Soeiro.pdfDissertação Gabriel Soeiroapplication/pdf1719490https://repositorio.ufba.br/bitstream/ri/35585/1/Disserta%c3%a7%c3%a3o%20-%20Gabriel%20Soeiro.pdffd9e762dbffe658e9d3798f004b40643MD51LICENSElicense.txtlicense.txttext/plain1731https://repositorio.ufba.br/bitstream/ri/35585/2/license.txt322b424ca656d7e00c73f5549ccede1aMD52TEXTDissertação - Gabriel Soeiro.pdf.txtDissertação - Gabriel Soeiro.pdf.txtExtracted texttext/plain127094https://repositorio.ufba.br/bitstream/ri/35585/3/Disserta%c3%a7%c3%a3o%20-%20Gabriel%20Soeiro.pdf.txt108e5afda1f2d19698a391471b4ec6caMD53ri/355852022-06-25 06:23:57.623oai:repositorio.ufba.br:ri/35585TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkENCg0KQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIG8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3Vtbykgbm8gZm9ybWF0byBpbXByZXNzbyBlL291IGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIA0KZm9ybWF0b3Mgw6F1ZGlvIGUvb3UgdsOtZGVvLg0KDQpPIGF1dG9yIG91IHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBlL291IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28sIHBvZGVuZG8gbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSAgcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2t1cCBlIHByZXNlcnZhw6fDo28uDQoNCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLg0KDQpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIG9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuDQoNCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgIFJFU1VMVEUgREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BICBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIA0KT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08sIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIA0KRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4NCg0KTyBSZXBvc2l0w7NyaW8gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyLCBjbGFyYW1lbnRlLCBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28gZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLg0KRepositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-06-25T09:23:57Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) |
dc.title.alternative.pt_BR.fl_str_mv |
Habitat Selection Based on Chemosensory Cues in Loggerhead Turtles Hatchlings (Caretta caretta Linnaeus, 1758) |
title |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) |
spellingShingle |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) Oliveira, Gabriel Soeiro Alexandrino CNPQ::CIENCIAS BIOLOGICAS::ECOLOGIA::ECOLOGIA TEORICA Tartaruga marinha Quimiorrecepção Habitat - Seleção Conservação Poluição química sea turtle chemoreception habitat selection conservation pollution |
title_short |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) |
title_full |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) |
title_fullStr |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) |
title_full_unstemmed |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) |
title_sort |
Seleção de habitat baseada em pistas quimiossensoriais em filhotes de Tartarugas Cabeçudas (Caretta caretta Linnaeus, 1758) |
author |
Oliveira, Gabriel Soeiro Alexandrino |
author_facet |
Oliveira, Gabriel Soeiro Alexandrino |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Leduc, Antoine |
dc.contributor.advisor1ID.fl_str_mv |
https://orcid.org/ 0000-0002-8471-2114 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8457333176497795 |
dc.contributor.advisor-co1.fl_str_mv |
Silva, Eduardo Mendes da |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/7294945499790680 |
dc.contributor.referee1.fl_str_mv |
Leduc, Antoine |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/ 0000-0002-8471-2114 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8457333176497795 |
dc.contributor.referee2.fl_str_mv |
Araújo, Cristiano Venícius de Matos |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/ 0000-0003-1793-2966 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8123137381169371 |
dc.contributor.referee3.fl_str_mv |
Santos, Matilde Maria Moreira |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/ 0000-0001-7067-5028 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/9649636182414081 |
dc.contributor.authorID.fl_str_mv |
https://orcid.org/ 0000-0002-8501-1440 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0029273289299709 |
dc.contributor.author.fl_str_mv |
Oliveira, Gabriel Soeiro Alexandrino |
contributor_str_mv |
Leduc, Antoine Silva, Eduardo Mendes da Leduc, Antoine Araújo, Cristiano Venícius de Matos Santos, Matilde Maria Moreira |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS BIOLOGICAS::ECOLOGIA::ECOLOGIA TEORICA |
topic |
CNPQ::CIENCIAS BIOLOGICAS::ECOLOGIA::ECOLOGIA TEORICA Tartaruga marinha Quimiorrecepção Habitat - Seleção Conservação Poluição química sea turtle chemoreception habitat selection conservation pollution |
dc.subject.por.fl_str_mv |
Tartaruga marinha Quimiorrecepção Habitat - Seleção Conservação Poluição química |
dc.subject.other.pt_BR.fl_str_mv |
sea turtle chemoreception habitat selection conservation pollution |
description |
Após eclodirem em ambiente terrestre, as tartarugas marinhas precisam alcançar o habitat marinho. Entretanto, como os filhotes se orientam para encontrar habitats adequados para desenvolvimento, estes que podem variar entre as espécies, ainda se configura como uma lacuna. Apesar das tartarugas adultas apresentarem habilidades quimiossensoriais para orientação em ambiente marinho, é possível que esse mecanismo seja a base da primeira migração de filhotes pós-eclosão. Entretanto, a quimiorrecepção é frequentemente prejudicada pela poluição química. Por exemplo, os filhotes que atraversam as águas costeiras podem encontrar aguas poluídas (química ou biologicamente) como resultado das atividades humanas (e.g., esgotamento doméstico urbano). Em uma espécie de tartaruga marinha (Caretta caretta), determinamos i) o papel da quimiorrecepção na escolha do habitat marinho (costeiro e oceânico), e ii) se a poluição química costeira interfere nesse mecanismo sensorial. Usando um tanque “Y”, que possibilita apresentar dois fluxos de água distintos concomitantes, as tartarugas estiveram livres para nadar em ambos os fluxos por um período total de 10 minutos. No primeiro experimento, os filhotes permaneceram quase 70% do tempo na água oceânica. No segundo experimento, quando os filhotes tiveram que escolher entre água costeira e água poluída (coletada em uma praia com escoamento doméstico), não houve preferência pelo fluxo de água costeira ou costeira poluída. Contudo, essas evidências demostram o papel da quimiorrecepção na seleção de habitat e a falta de reconhecimento de condições potencialmente prejudiciais (poluição) o que poderia comprometer a aptidão, por exemplo, causando maior mortalidade por contaminação. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-01-15 |
dc.date.accessioned.fl_str_mv |
2022-06-24T23:33:19Z |
dc.date.available.fl_str_mv |
2022-06-24T23:33:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufba.br/handle/ri/35585 |
url |
https://repositorio.ufba.br/handle/ri/35585 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.pt_BR.fl_str_mv |
Adams SM. 1976. The ecology of eelgrass, Zostera manna (L), fish communities. I. Structural analysis. J Exp Mar Biol Ecol. 22:269-291. Agardy MT. 1994. Advances in marine conservation: the role of marine protected areas. Trends Ecol Evol. 9:267-270. Al-Bahry SN, Mahmoud IY, Al-Zadjali M, Elshafie A, Al-Harthy A, Al-Alawi W. 2011. Antibiotic resistant bacteria as bio-indicator of polluted effluent in the green turtles, Chelonia mydas in Oman. Mar Environ Res. 71:139-144. Arianoutsou M. 1988. Assessing the impacts of human activities on nesting of loggerhead sea-turtles (Caretta Caretta) on Zakynthos island, western Greece. Environ Conserv J. 15:327-334. Aubret F, Shine R. 2008. Early experience influences both habitat choice and locomotor performance in tiger snakes. Am Nat. 171:524-531. Barth W, Hulek K, Peters C, Van de Ven A. 2015. Compact complex surfaces. Springer. 4. Bjorndal KA. 1997. Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA. Eds. The biology of sea turtles. Boca Raton. CRC Press.199–231. Bolten AB, Balazs GH. 1995. Biology of the early pelagic stage--the "lost year". In: Bjorndal KA. Eds. Biology and conservation of sea turtles. Revised edition. Smithsonian Institution Press. Washington D.C. USA. 579-581. Bolten AB. 2003a. Variation in sea turtle life history patterns: neritic versus oceanic developmental stages. In: Lutz PL, Musick JA, Wyneken J. Eds. The Biology of Sea turtles. Boca Raton. CRC Press. 2:243−257. Bolten AB. 2003b. Active swimmers-passive drifters: the oceanic juvenile stage of loggerheads in the Atlantic system. In: Bolten AB, Witherington B. Eds. Loggerhead sea turtles. Smithsonian Institution Press. Washington. 63–98. Boyle MC, Limpus CJ. 2008. The stomach contents of post-hatchling green and loggerhead sea turtles in the southwest Pacific: an insight into habitat association. Mar Biol. 155:233-241. Briffa M, de la Haye K, Munday PL. 2012. High CO2 and marine animal behavior: potential mechanisms and ecological consequences. Mar Pollut Bull. 64:1519–1528. Briscoe DK, Parker DM, Balazs GH, Kurita M, Saito T, Okamoto H, Crowder LB. 2016. Active dispersal in loggerhead sea turtles (Caretta caretta) during the ‘lost years’. Proc Biol Sci. 283:20160690. Brooker RM, Dixson DL. 2016. Assessing the role of olfactory cues in the early life history of coral reef fish: current methods and future directions. In: Muller-Schwarze D. 2012. Eds. Chemical signals in vertebrates. Springer Sci Bus Media.13:17-31. Brooker RM. 2019. Olfactory discrimination between chemical cues from coastal vegetation in two palaemonid shrimps, Palaemon vulgaris Say, 1818 and P. affinis H. Milne Edwards, 1837 (Decapoda: Caridea: Palaemonidae). J Crustacean Biol. 39:312-315. Brost B, Witherington B, Meylan A, Leone E, Ehrhart L, Bagley D. 2015. Sea turtle hatchling production from Florida (USA) beaches, 2002-2012, with recommendations for analyzing hatching success. Endanger Species Res. 27:53-68. Buckley FG, Buckley PA. 1980. Habitat Selection and Marine Birds. In: Burger J, Olla BL, Winn HE. Eds. Behavior of Marine Animals. Springer. Boston. MA. Byles RA. 1988. Behavior and ecology of sea turtles from Chesapeake Bay. Virginia. Camacho M, Luzardo OP, Boada LD, Jurado LFL, Medina M, Zumbado M, Orós J. 2013. Potential adverse health effects of persistent organic pollutants on sea turtles: evidences from a cross-sectional study on Cape Verde loggerhead sea turtles. Sci Total Environ. 458:283-289. Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, Aguilar A. 2005. Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar Biol. 147:583-591. Carr AF. 1962. Orientation problems in the high seas travel and terrestrial movements of marine turtles. Am Sci. 50:359-374. Carr A. 1965. The navigation of the green turtle. Sci Am. 212:78-87. Carr AF. 1987. Impact of nondegradable marine debris on the ecology and survival outlook of sea turtles. Mar Pollut Bull. 18:352-356. Carr MH. 1994. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecol. 75:1320-1333. Constantino MA, Salmon M. 2003. Role of chemical and visual cues in food recognition by leatherback posthatchlings (Dermochelys coriacea L). Zool. 106:173–181.doi: 10.1078/0944-2006-00114. Coppock E, Brochhagen T. 2013. Diagnosing truth, interactive sincerity, and depictive sincerity. In: Einstein A, Podolsky B, Rosen N. 1935. Eds. Semantics and Linguistic Theory. 358-375. Davis JM. 2008. Patterns of variation in the influence of natal experience on habitat choice. Q Rev Biol. 83:363-380. Deraniyagala PEP. 1930. The testudinata of Ceylon. Ceylon J. Sci. 16: 43-88. Deraniyagala PEP. 1939. The tetrapod reptiles of Ceylon. Testudinates and Crocodilians. Colombo Museum Natural History Series 1. Colombo. Ceylon. Diaz-Gil D, Haerter F, Falcinelli S, Ganapati S, Hettiarachchi GK, Simons JC, Eikermann-Haerter K. 2016. A novel strategy to reverse general anesthesia by scavenging with the acyclic cucurbit [n] uril-type molecular container calabadion 2. Anesthesiology: J Am Soc Anesthesia. 125:333-345. Dixson DL, Munday PL, Jones GP. 2010. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett. 13:68–75. Dixson DL, Jones G P, Munday PL, Pratchett MS, Srinivasan M, Planes S, Thorrold SR. 2011. Terrestrial chemical cues help coral reef fish larvae locate settlement habitat surrounding islands. Ecol Evol. 1:586-595. Dixson DL, Jennings AR, Atema J, Munday PL. 2014. Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Change Biol. 21:1454-1462. doi: 10.1111/gcb.12678. Doney SC. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Sci. 328:1512-1516. Donner SD, Kucharik CJ. 2008. Proceedings of the National Academy of Sciences. USA.105:4513-4518. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Geider RJ. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Sci. 320:893-897. Endres CS, Putman NF, Lohmann KJ. 2009. Perception of airborne odors by loggerhead sea turtles. J Exp Biol. 212:3823–3827. doi: 10.1242/jeb.033068. Endres CS, Lohmann KJ. 2012. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a possible mechanism for locating high productivity areas for foraging. J Exp. Biol. 215: 3535–3538. doi: 10.1242/jeb.073221. Endres CS, Putman NF, Ernst DA, Kurth JA, Lohmann CM, Lohmann KJ. 2016. Multi-modal homing in sea turtles: modeling dual use of geomagnetic and chemical cues in island-finding. Front Behav Neurosci.10:19. Fernandino G, Elliff C, Silva IR, Bittencourt AC. 2015. How many pellets are too many? The pellet pollution index as a tool to assess beach pollution by plastic resin pellets in Salvador, Bahia, Brazil. Revista de Gestão Costeira Integrada- J Coast Zone Manag.15:325-332. Fitzgerald WF, Lamborg CH, Hammerschmidt CR. 2007. Marine biogeochemical cycling of mercury. Chem Rev. 107:641-662. Frick MG, Williams KL, Bolten AB, Bjorndal KA, Martins HR. 2009. Foraging ecology of oceanic-stage loggerhead turtles Caretta caretta. Endang Species Res. 9:91–97. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Karl DM. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry. 70:153-226. Gaos AR, Lewison RL, Yañez IL, Wallace BP, Liles MJ, Nichols WJ, Seminoff JA. 2011. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles. Biol Lett. 8:54-56. Gibson RN, Ansell AD, Robb L. 1993. Seasonal and annual variations in abundance and species composition of fish and marocrustacean communities on a Scottish sandy beach. Mar Ecol Prog Ser. 98:89-105. Gibson RN. 1994. Impact of habitat quality and quantity on the recruitment of juvenile flatfish. Neth J Sea Res.32:191-206. Gouraguine A, Díaz-Gil C, Reñones O, Otegui DS, Palmer M, Hinz H, Moranta J. 2017. Behavioural response to detection of chemical stimuli of predation, feeding and schooling in a temperate juvenile fish. J Exp Mar Biol Ecol. 486:140-147. Gotceitas V, Brown JA. 1993. Substrate selection by juvenile Atlantic cod (Gadus morhua): effects of predation risk. Oecol. 93:31-37. Grassman MA, Owens DW, McVey JP, Marquez RM. 1984. Olfactory-based orientation in artificially imprinted sea turtles. Sci. 224: 83-84. Greif S, Siemers B. M. 2010. Innate recognition of water bodies in echolocating bats. Nat Commun. 1:107. Guillette LJ. 2000. Contaminant-induced endocrine disruption in wildlife. Growth Horm IGF Res. 10:45-50. Halfwerk W, Slabbekoorn H. 2015. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol Let. 11:20141051. Harasti D, Martin-Smith K, Gladstone W. 2014. Ontogenetic and sex-based differences in habitat preferences and site fidelity of White's seahorse Hippocampus whitei. J Fish Biol. 85:1413-1428. Hatase H, Takai N, Matsuzawa Y, Sakamoto W, Omuta K, Goto K, Fujiwara T. 2002a. Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar Ecol Prog Ser. 233:273-281. Hatase H, Matsuzawa Y, Sakamoto W, Baba N, Miyawaki I. 2002b. Pelagic habitat use of an adult Japanese male loggerhead turtle Caretta caretta examined by the Argos satellite system. Fish Sci. 68:945-947. Hawkes LA, Broderick AC, Godfrey MH, Godley BJ. 2009. Climate change and marine turtles. Endanger Species Res. 7:137-154. Hazlett B. 2011. Chemical cues and reducing the risk of predation. In: Breithaupt T, Thiel M. Eds. Communication in Crustaceans. Springer. New York. 355–370. Hoffman JI, Forcada J. 2012. Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella). Mamm Biol. 77:71-73. Holmes TH, McCormick MI. 2010. Size-selectivity of predatory reef fish on juvenile prey. Mar Ecol Prog Ser. 399:273-283. Ibáñez A., López P, Martín J. 2012. Discrimination of ‘conspecifics’ chemicals may allow Spanish terrapins to find better partners and avoid competitors. Anim Behav. 83:1107–1113. Immelman RFM. 1972. The history of libraries in South Africa. Give the people light: Essays in honour of Matthew Miller Stirling. 15-37. INEMA. Instituto do Meio Ambiente e Recursos Hídricos do Estado da Bahia. 2019. Boletim de Balneabilidade para Litoral de Salvador. Boletim nº 44/2019. INEMA. Bahia. Acesso em: 01/11/2019. IBM Corp. Released. 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Jacobsen HP, Stabell OB. 2004. Antipredator behaviour mediated by chemical cues: the role of conspecific alarm signalling and predator labelling in the avoidance response of a marine gastropod. Oikos. 104:43-50. Janz N, Söderlind L, Nylin S. 2009. No effect of larval experience on adult host preferences in Polygonia c‐album (Lepidoptera: Nymphalidae): on the persistence of Hopkins’host selection principle. Ecol Entomol. 34:50-57. Jones J. 2001. Habitat selection studies in avian ecology: A critical review. Auk. 118:556-562. Jones TT, Seminoff JA. 2013. Feeding Biology. In: Wyneken J, Lohmann KJ, Musick J. Eds. Sea turtle. 3:211–247. Kamil AC. 1988. Behavioral ecology and sensory biology. In: Atema J, Fay RR, Popper AN, Tavolga WN. Eds. Sensory biology of aquatic animals. Springer. New York. 189–201. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu Rev Mar Sci. 2:199-229. Keinath JA. 1993. Movements and behavior of wild and head-started sea turtles. PhD dissertation. College of William and Mary. Gloucester Point. VA. Kelly AE, Reuer MK, Goodkin NF, Lead EA. 2009. Concentrations and isotopes in corals and water near Bermuda. Earth Planet. Sci. Lett. 283:93-100. Kight CR, Swaddle JP. 2011. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett. 14:1052-1061. Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG, Pineda J. 2002. Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci. 70:309-340. Lack D. 1954. The natural regulation of animal numbers., Oxford, England. Clarendon Press. Lasley-Rasher RS, Yen J. 2012. Predation risk suppresses mating success and offspring production in the coastal marine copepod, Eurytemora herdmani. Limnol Oceanogr. 57:433-440. Lecchini D, Nakamura Y. 2013. Use of chemical cues by coral reef animal larvae for habitat selection. Aquat Biol. 19:231-238. Lecchini D, Dixson DL, Lecellier G, Roux N, Frédérich B, Besson M, Nakamura Y. 2016. Habitat selection by marine larvae in changing chemical environments. Mar Pollut Bull. 114: 210-217. Leduc AOHC, Munday PL, Brown GE, Ferrari MCO. 2013. Effects of acidification on olfactory mediated behavior in freshwater and marine ecosystems: a synthesis. Philos T R Soc B. 368:20120447. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Friedlingstein P. 2009. Trends in the sources and sinks of carbon dioxide. Nat Geosci. 2:831. Lewin J, Chen CH. 1973. Changes in the concentration of soluble and particulate iron in seawater enclosed in containers 1. Limnol Oceanogr. 18:590-596. Lohmann KJ, Lohmann CMF. 1994. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J Exp Biol. 194:23–32. Lohmann KJ, Lohmann CMF. 1996. Detection of magnetic field intensity by sea turtles. Nat. 380:59–61. doi: 10.1038/380059a0. Lohmann KJ, Lohmann CMF, Endres CS. 2008a. The sensory ecology of ocean navigation. J Exp Biol. 211:1719–1728. doi: 10.1242/jeb.015792. Lohmann KJ, Luschi P, Hays GC. 2008b. Goal navigation and island finding in sea turtles. J Exp Biol. 356:83–95. doi: 10.1016/j.jembe.2007.12.017. Lohmann KJ, Putman NF, Lohmann CMF. 2012. The magnetic map of hatchling loggerhead sea turtles. Current Opinion in Neurobiology. 22:336–342. doi: 10.1016/j.conb.2011.11.005. Lohmann K.J, Lohmann CMF, Rogers JR, Putman NF. 2013. Natal homing and imprinting in sea turtles. In: Wyneken J, Lohmann KJ, Musick J. Eds. Biology of Sea Turtles. Boca Raton CRC Press. 59–77. Lohmann KJ, Lohmann CMF. 2019. There and back again: natal homing by magnetic navigation in sea turtles and salmon. J Exp Biol. 222 (Suppl 1). jeb184077. Lutcavage EM, Lutz PL, Bossart GD, Hudson DM. 1997. Physiologic and clinicopathologic effects of crude oil on loggerhead sea turtles. Arch Environ Contam Toxicol. 28:417–22. Lutz P, Lutcavage M, Hudson D. 1986. Study of the effect of oil on marine turtles. In: Vargo S, Lutz PL, Odell DK, Van Vleet T, Bossart G. Eds. Physiological effects, Minerals Management Service Contract Number 114-12-0001-30063St. Petersburg, FL: Florida Inst. of Oceanography. Manríquez PH, Jara ME, Mardones ML, Navarro JM, Torres R, Lardies MA, Vargas CA, Duarte C, Widdicombe S, Salisbury J. 2013. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco). PLoS ONE. 8:68643. Manton M, Karr A, Ehrenfeld DW. 1972. Chemoreception in the migratory sea turtle, Chelonia mydas. Biol Bull. 143:184–195. doi: 10.2307/1540338. Marbry KE, Stamps JA. 2007. Dispersing brush mice prefer habitat like home. Proc Biol Sci. 275:543-548. McClellan CM, Read A J. 2007. Complexity and variation in loggerhead sea turtle life history. Biol Lett. 3:592-594. McHugh KA, Allen JB, Barleycorn AA, Wells RS. 2011. Natal philopatry, ranging behavior, and habitat selection of juvenile bottlenose dolphins in Sarasota Bay. Florida. J Mammal. 92:1298-1313. Menge BA, Sutherland JP. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat. 130:730-757. Meredith TL, Kajiura SM. 2010. Olfactory morphology and physiology of elasmobranchs. Eur J Exp Biol. 213:3449–3456. Morreale, SJ, Standora, EA. 1998. Early life stage ecology of sea turtles in northeastern US waters. NOAA Technical Memorandum. NMFS-SEFSC-413. Morreale SJ, Standora EA. 2005.Western North Atlantic waters: crucial developmental habitat for Kemp’s ridley and loggerhead sea turtles. Chelonian Conserv Bi. 4:872-882. Mrosovsky N. 1980. Thermal biology of sea turtles. Am Zool. 20:531-547. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB. 2009. Ocean acidification impairs olfactory discrimination of homing ability of a marine fish. PNAS USA. 106:1848–1852. Musick JA, Limpus CJ. 1997. Habitat utilization and migration in juvenile sea turtles. In: Lutz P, Musick JA. Eds. The biology of sea turtles. 1. ed. Boca Raton. CRC Press.137–163. Orians G. 1971. Ecological aspects of behavior. Avian Biology.1: 513-546. Orth RJ, Heck KL, Montfrans, J. 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries. 7:339-350. Parker DM, Cooke WJ, Balazs GH. 2003. Diet of oceanic loggerhead sea turtles (Caretta caretta) in the central North Pacific. Fish Bull. 103:142-152. Parra GJ, Corkeron PJ, Marsh H. 2006. Population sizes, site fidelity and residence patterns of Australian snubfin and Indo-Pacific humpback dolphins: Implications for conservation. Biol Conserv. 129:167-180. Pereira PMS. 2009. A sedimentação areno-lamosa do Baixo da Boca do Rio. Salvador. Bahia. Monografia. Universidade Federal da Bahia. Salvador. Pereira GG. 2010. Estudos dos principais impactos ambientais dos emissários submarinos. Monografia. Universidade Federal de Santa Catarina. Florianópolis. Pihl L, Isaksson I, Wennhage H, Moksnes PO. 1995. Recent increase of filamentous algae in shallow Swedish bays: effects on the community structure of epibenthic fauna and fish. Neth J Sea Res. 29:1-10. Polovina J, Uchida I, Balazs G, Howell EA, Parker D, Dutton P. 2006. The Kuroshio Extension Bifurcation Region: a pelagic hotspot for juvenile loggerhead sea turtles. Deep Sea Research Part II: Topical Studies in Oceanography. 53:326-339. Pough FH, Janis CM, Heiser JB. 2008. A vida dos vertebrados. São Paulo: Atheneu. Pritchard PC. 1997. Evolution, phylogeny, and current status. In: Lutz P, Musick JA. Eds. The biology of sea turtles. 1. ed. Boca Raton. CRC Press.137–163. Putman NF, Lohmann KJ. 2008. Compatibility of magnetic imprinting and secular variation. Curr Biol. 18:R596–R597. doi:10.1016/j.cub.2008.05.008. Putman NF, Endres CS, Lohmann CM, Lohmann KJ. 2011. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr Biol. 21:463–466. doi: 10.1016/j.cub.2011.01.057. Putman NF, Mansfield KL. 2015. Direct evidence of swimming demonstrates active dispersal in the sea turtle “lost years”. Curr Biol. 25:1221-1227. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J. 2017. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences. Reddy CM, Sstegeman JJ, Hahn ME. 2008. Organic pollutants: Presence and Effects in humans and marine animals. In: Walsh PJ, Smith SL, Solo-Gabriele H, Gerwick WH. Eds. Oceans and Human Health: Risks and Remedies from the Seas. MA. Burlington. Academic Press. 121–141. Rooker JR, Secor DH, Demetrio G, Kaufman AJ, Rios AB, Ticina V. 2007. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar Ecol Prog Ser. 368:231–239. Rosenzweig ML. 1981. A theory of habitat selection. Ecol. 62:327-335. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DW, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF. 2004. The oceanic sink for anthropogenic CO2. Sci. 305:367-371. Schroth AW, Crusius J, Sholkovitz ER, Bostick BC. 2009. Iron solubility driven by speciation in dust sources to the ocean. Nat Geosci. 2:337. Schwenk K. 2008. Comparative anatomy and physiology of chemical senses in nonavian aquatic reptiles. In: Thewissen JGM, Nummela S. Eds. Sensory Evolution on the Threshold. Adaptations in Secondarily Aquatic Vertebrates. Berkeley: University of California Press. 65–81. Sih A, Ferrari COM, Harris DJ. 2011. Evolution and behavioural responses to human‐induced rapid environmental change. Evol Appl. 4:367-387. Small C, Nicholls RJ. 2003. A global analysis of human settlement in coastal zones. J. Coast Res. 84-599. Snover AK, Amy K, Quay PD. 2000. Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane. Global Biogeochem Cy. 14:25-39. Solomon S, Manning M, Marquis M, Qin D. 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon S, Manning M, Marquis M, Qin D. Climate Change. Univ. Press. Cambridge.19–91. Southwood AL, Higgins BM, Swimmer Y, Brill RW. 2007. Chemoreception in loggerhead sea turtles: an assessment of the feasibility of using chemical deterrents to prevent sea turtle interactions with longline fishing gear. NOAA (Natl Ocean Atmos Adm) Tech Memo NMFS-PIFSC-10. Southwood AL, Fritsches K, Brill R., Swimmer Y. 2008. Sound, chemical and light detection in sea turtles and pelagic fishes: sensory-based approaches to bycatch reduction in longline fisheries. Endanger Species Res. 5:225–238. doi:10.3354/esr00097. Storelli MM, Marcotrigiano GO. 2003. Heavy metal residues in tissues of marine turtles. Mar Pollut Bull. 46:397-400. Storelli MM, Storelli A, D'addabbo R, Marano C, Bruno R, Marcotrigiano GO. (2005). Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: overview and evaluation. Environ Pollut. 135:163-170. Tidau S, Briffa M. 2019. Anthropogenic noise pollution reverses grouping behaviour in hermit crabs. Anim Behav. 151:113-120. Tuomainen U, Candolin U. 2011. Behavioural responses to human‐induced environmental change. Biol Rev. 86:640-657. Vitt LJ, Caldwell MW. 2009. Herpetology: an introductory biology of amphibians and reptiles. 3 ed. San Diego. Academic Press. Walker TA, Parmenter CJ. 1990. Absence of a pelagic phase in the life cycle of the flatback turtle. Natator depressus (Garman). J Biogeogr. 275-278. Walker TA. 1994. Post-hatchling dispersal of sea turtles. In: Proceedings of the Australian Marine Turtle Conservation Workshop. Queensland Australia. 79. Watson, JW, Epperly SP, Shah AK, Foster DG. 2005. Fishing methods to reduce sea turtle mortality associated with pelagic longlines. Can J Fish Aquat Sci. 62:965–981. doi:10.1139/f05-004. Werner EE, Gilliam JF. 1984. The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Sys. 15:393-425. Wheeler A. 1980. Fish-algal relations in temperate waters. In: Price JH, Irvine DEG, Farnham WF. The shore environment. London. Academy Press. 677-698. Witherington B. 2002. Ecology of neonate loggerhead turtles inhabiting lines of downwelling near a Gulf Stream front. Mar Biol. 140:843-853. Witherington BE, Hirama S, Hardy R. 2012. Young sea turtles of the pelagic Sargassum-dominated drift community: habitat use, population density, and threats. Mar Ecol Prog Ser. 463:1-22. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Bahia |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ecologia:TAV(antigo Programa de Pós em Ecologia e Biomonitoramento) |
dc.publisher.initials.fl_str_mv |
UFBA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Biologia |
publisher.none.fl_str_mv |
Universidade Federal da Bahia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/35585/1/Disserta%c3%a7%c3%a3o%20-%20Gabriel%20Soeiro.pdf https://repositorio.ufba.br/bitstream/ri/35585/2/license.txt https://repositorio.ufba.br/bitstream/ri/35585/3/Disserta%c3%a7%c3%a3o%20-%20Gabriel%20Soeiro.pdf.txt |
bitstream.checksum.fl_str_mv |
fd9e762dbffe658e9d3798f004b40643 322b424ca656d7e00c73f5549ccede1a 108e5afda1f2d19698a391471b4ec6ca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459646926585856 |