Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?

Detalhes bibliográficos
Autor(a) principal: Nascimento, Marcio Luis Ferreira
Data de Publicação: 2010
Outros Autores: Zanotto, Edgar Dutra
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://www.repositorio.ufba.br/ri/handle/ufba/569
Resumo: An analysis of the kinetic coefficient of crystal growth, Ukin , recently proposed by Ediger and colleagues [J. Chem. Phys. 128 (2008) 034709] indicates that the Stokes-Einstein / Eyring (SE/E) equation does not describe the transport controlling crystal growth rates in fragile glass forming liquids. Ukin was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 104 to 1012 Pa.s. Here we revisit this interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region, Tg, thus covering a wider viscosity range: 101 - 1013 Pa.s. We then propose and use normalized kinetic coefficients (Mkin) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (Mkin ~ 1/η and ξ ~ 1) from low to moderate viscosities (eta < 106 Pa.s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to Tg! However, for at least three fragile liquids [diopside (kink at 1.08Tg, eta = 1.6x108 Pa.s), lead metasilicate (kink at 1.14Tg, eta = 4.3x106 Pa.s) and lithium disilicate (kink at 1.11Tg, eta = 1.6x108 Pa.s) there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al., and demonstrate that viscosity data cannot be used to describe the transport part of crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of Tg.
id UFBA-2_8c5ed6671670fcc36552e569a4cb8725
oai_identifier_str oai:repositorio.ufba.br:ufba/569
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Nascimento, Marcio Luis FerreiraZanotto, Edgar DutraNascimento, Marcio Luis FerreiraZanotto, Edgar Dutra2010-11-10T18:35:11Z2010-11-10T18:35:11Z201000219606http://www.repositorio.ufba.br/ri/handle/ufba/569The Journal of Chemical Physics, v. 133, p. 174701An analysis of the kinetic coefficient of crystal growth, Ukin , recently proposed by Ediger and colleagues [J. Chem. Phys. 128 (2008) 034709] indicates that the Stokes-Einstein / Eyring (SE/E) equation does not describe the transport controlling crystal growth rates in fragile glass forming liquids. Ukin was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 104 to 1012 Pa.s. Here we revisit this interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region, Tg, thus covering a wider viscosity range: 101 - 1013 Pa.s. We then propose and use normalized kinetic coefficients (Mkin) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (Mkin ~ 1/η and ξ ~ 1) from low to moderate viscosities (eta < 106 Pa.s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to Tg! However, for at least three fragile liquids [diopside (kink at 1.08Tg, eta = 1.6x108 Pa.s), lead metasilicate (kink at 1.14Tg, eta = 4.3x106 Pa.s) and lithium disilicate (kink at 1.11Tg, eta = 1.6x108 Pa.s) there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al., and demonstrate that viscosity data cannot be used to describe the transport part of crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of Tg.Submitted by Márcio Nascimento (mlfn@ufba.br) on 2010-11-10T18:35:11Z No. of bitstreams: 1 DoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdf: 1823909 bytes, checksum: b4e31df41db1a1fdf3737c90baacc40b (MD5)Made available in DSpace on 2010-11-10T18:35:11Z (GMT). No. of bitstreams: 1 DoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdf: 1823909 bytes, checksum: b4e31df41db1a1fdf3737c90baacc40b (MD5) Previous issue date: 2010-10-01Estados UnidosVidroCristalizaçãoCrescimento de CristaisNucleaçãoViscosidadeStokes-EinsteinDoes viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAinfo:eu-repo/semantics/openAccessORIGINALDoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdfDoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdfapplication/pdf1823909https://repositorio.ufba.br/bitstream/ufba/569/1/DoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdfb4e31df41db1a1fdf3737c90baacc40bMD51LICENSElicense.txtlicense.txttext/plain1895https://repositorio.ufba.br/bitstream/ufba/569/2/license.txt0ae21cf341e0528305a889605d65e57bMD52TEXTDoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdf.txtDoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdf.txtExtracted texttext/plain48194https://repositorio.ufba.br/bitstream/ufba/569/3/DoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdf.txt91421c6f177371d359fa277219dd7033MD53ufba/5692022-10-24 19:57:33.471oai:repositorio.ufba.br:ufba/569TGljZW5zZSBncmFudGVkIGJ5IE3DoXJjaW8gTmFzY2ltZW50byAobWxmbkB1ZmJhLmJyKSBvbiAyMDEwLTExLTEwVDE4OjM1OjExWiAoR01UKToKClRlcm1vIGRlIExpY2Vuw6dhLCBuw6NvIGV4Y2x1c2l2bywgcGFyYSBvIGRlcMOzc2l0byBubyAKcmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZCQQoKICAgIFBlbG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldQpyZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EsIGNvbmNlZGUgYW8KUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgQmFoaWEgbyBkaXJlaXRvCmRlIG1hbnRlciB1bWEgY8OzcGlhIGVtIHNldSByZXBvc2l0w7NyaW8gY29tIGEgZmluYWxpZGFkZSwgcHJpbWVpcmEsIApkZSBwcmVzZXJ2YcOnw6NvLiBFc3NlIHRlcm1vLCBuw6NvIGV4Y2x1c2l2bywgbWFudMOqbSBvcyBkaXJlaXRvcyBkZSAKYXV0b3IvY29weXJpZ2h0LCBtYXMgZW50ZW5kZSBvIGRvY3VtZW50byBjb21vIHBhcnRlIGRvIGFjZXJ2byBpbnRlbGVjdHVhbAogZGVzc2EgVW5pdmVyc2lkYWRlLiAKCiAgICBQYXJhIG9zIGRvY3VtZW50b3MgcHVibGljYWRvcyBjb20gcmVwYXNzZSBkZSBkaXJlaXRvcyBkZSAKZGlzdHJpYnVpw6fDo28sIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EgZW50ZW5kZSBxdWU6IAoKICAgIE1hbnRlbmRvIG9zwqAgZGlyZWl0b3MgYXV0b3JhaXMsIHJlcGFzc2Fkb3MgYSB0ZXJjZWlyb3MsIGVtIGNhc28gCmRlIHB1YmxpY2HDp8O1ZXMsIG8gcmVwb3NpdMOzcmlvIHBvZGUgcmVzdHJpbmdpciBvIGFjZXNzbyBhbyB0ZXh0byAKaW50ZWdyYWwsIG1hcyBsaWJlcmEgYXMgaW5mb3JtYcOnw7VlcyBzb2JyZSBvIGRvY3VtZW50byAoTWV0YWRhZG9zIGRlc2NyaXRpdm9zKS4KIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIAplbSBtYW50ZXIgc3VhIHByb2R1w6fDo28gY2llbnTDrcKtZmljYSBjb20gYXMgcmVzdHJpw6fDtWVzIGltcG9zdGFzIHBlbG9zIAplZGl0b3JlcyBkZSBwZXJpw7NkaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNhw6fDtWVzIGVtIGluaWNpYXRpdmFzIHF1ZSBzZWd1ZW0gYSBwb2zDrcKtdGljYSBkZSAKQWNlc3NvIEFiZXJ0bywgb3MgZGVww7NzaXRvcyBjb21wdWxzw7NyaW9zIG5lc3NlIHJlcG9zaXTDs3JpbyBtYW50w6ptIApvcyBkaXJlaXRvcyBhdXRvcmFpcywgbWFzIG1hbnTDqm0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0YcOnw6NvIGRlc3NlIHRlcm1vIG7Do28gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EsIHBvZGUgc2VyIGFjZWl0byBwZWxvIAphdXRvciwgZGV0ZW50b3JlcyBkZSBkaXJlaXRvcyBlL291IHRlcmNlaXJvcyBhbXBhcmFkb3MgcGVsYSAKdW5pdmVyc2lkYWRlLiBEZXZpZG8gYW9zIGRpZmVyZW50ZXMgcHJvY2Vzc29zIHBlbG8gcXVhbCBhIHN1Ym1pc3PDo28gCnBvZGUgb2NvcnJlciwgbyByZXBvc2l0w7NyaW8gcGVybWl0ZSBhIGFjZWl0YcOnw6NvIGRhIGxpY2Vuw6dhIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnDp8Ojbwo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-10-24T22:57:33Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.en.fl_str_mv Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
title Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
spellingShingle Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
Nascimento, Marcio Luis Ferreira
Vidro
Cristalização
Crescimento de Cristais
Nucleação
Viscosidade
Stokes-Einstein
title_short Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
title_full Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
title_fullStr Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
title_full_unstemmed Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
title_sort Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?
author Nascimento, Marcio Luis Ferreira
author_facet Nascimento, Marcio Luis Ferreira
Zanotto, Edgar Dutra
author_role author
author2 Zanotto, Edgar Dutra
author2_role author
dc.contributor.author.fl_str_mv Nascimento, Marcio Luis Ferreira
Zanotto, Edgar Dutra
Nascimento, Marcio Luis Ferreira
Zanotto, Edgar Dutra
dc.subject.eng.fl_str_mv Vidro
Cristalização
Crescimento de Cristais
Nucleação
Viscosidade
Stokes-Einstein
topic Vidro
Cristalização
Crescimento de Cristais
Nucleação
Viscosidade
Stokes-Einstein
description An analysis of the kinetic coefficient of crystal growth, Ukin , recently proposed by Ediger and colleagues [J. Chem. Phys. 128 (2008) 034709] indicates that the Stokes-Einstein / Eyring (SE/E) equation does not describe the transport controlling crystal growth rates in fragile glass forming liquids. Ukin was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 104 to 1012 Pa.s. Here we revisit this interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region, Tg, thus covering a wider viscosity range: 101 - 1013 Pa.s. We then propose and use normalized kinetic coefficients (Mkin) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (Mkin ~ 1/η and ξ ~ 1) from low to moderate viscosities (eta < 106 Pa.s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to Tg! However, for at least three fragile liquids [diopside (kink at 1.08Tg, eta = 1.6x108 Pa.s), lead metasilicate (kink at 1.14Tg, eta = 4.3x106 Pa.s) and lithium disilicate (kink at 1.11Tg, eta = 1.6x108 Pa.s) there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al., and demonstrate that viscosity data cannot be used to describe the transport part of crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of Tg.
publishDate 2010
dc.date.accessioned.fl_str_mv 2010-11-10T18:35:11Z
dc.date.available.fl_str_mv 2010-11-10T18:35:11Z
dc.date.issued.fl_str_mv 2010
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.ufba.br/ri/handle/ufba/569
dc.identifier.issn.none.fl_str_mv 00219606
dc.identifier.number.en.fl_str_mv The Journal of Chemical Physics, v. 133, p. 174701
identifier_str_mv 00219606
The Journal of Chemical Physics, v. 133, p. 174701
url http://www.repositorio.ufba.br/ri/handle/ufba/569
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ufba/569/1/DoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdf
https://repositorio.ufba.br/bitstream/ufba/569/2/license.txt
https://repositorio.ufba.br/bitstream/ufba/569/3/DoesViscosityKineticBarrierCrystalGrowthLiquidusTg-JCP133-Nascimento.pdf.txt
bitstream.checksum.fl_str_mv b4e31df41db1a1fdf3737c90baacc40b
0ae21cf341e0528305a889605d65e57b
91421c6f177371d359fa277219dd7033
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459367308066816