On deeply learning features for automatic person image re-identification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://repositorio.ufba.br/ri/handle/ri/21639 |
Resumo: | The automatic person re-identification (re-id) problem resides in matching an unknown person image to a database of previously labeled images of people. Among several issues to cope with this research field, person re-id has to deal with person appearance and environment variations. As such, discriminative features to represent a person identity must be robust regardless those variations. Comparison among two image features is commonly accomplished by distance metrics. Although features and distance metrics can be handcrafted or trainable, the latter type has demonstrated more potential to breakthroughs in achieving state-of-the-art performance over public data sets. A recent paradigm that allows to work with trainable features is deep learning, which aims at learning features directly from raw image data. Although deep learning has recently achieved significant improvements in person re-identification, found on some few recent works, there is still room for learning strategies, which can be exploited to increase the current state-of-the-art performance. In this work a novel deep learning strategy is proposed, called here as coarse-to-fine learning (CFL), as well as a novel type of feature, called convolutional covariance features (CCF), for person re-identification. CFL is based on the human learning process. The core of CFL is a framework conceived to perform a cascade network training, learning person image features from generic-to-specific concepts about a person. Each network is comprised of a convolutional neural network (CNN) and a deep belief network denoising autoenconder (DBN-DAE). The CNN is responsible to learn local features, while the DBN-DAE learns global features, robust to illumination changing, certain image deformations, horizontal mirroring and image blurring. After extracting the convolutional features via CFL, those ones are then wrapped in covariance matrices, composing the CCF. CCF and flat features were combined to improve the performance of person re-identification in comparison with component features. The performance of the proposed framework was assessed comparatively against 18 state-of-the-art methods by using public data sets (VIPeR, i-LIDS, CUHK01 and CUHK03), cumulative matching characteristic curves and top ranking references. After a thorough analysis, our proposed framework demonstrated a superior performance. |
id |
UFBA-2_9638c1e3563dddd34925a57d4061a84b |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/21639 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Franco, Alexandre da Costa e SilvaFranco, Alexandre da Costa e SilvaOliveira, Luciano Rebouças deSchnitman, LeizerLemes, Rubisley de PaulaLoula, Angelo ConradoPapa, João Paulo2017-03-10T14:52:25Z2017-03-10T14:52:25Z2017-03-102016-05-13http://repositorio.ufba.br/ri/handle/ri/21639The automatic person re-identification (re-id) problem resides in matching an unknown person image to a database of previously labeled images of people. Among several issues to cope with this research field, person re-id has to deal with person appearance and environment variations. As such, discriminative features to represent a person identity must be robust regardless those variations. Comparison among two image features is commonly accomplished by distance metrics. Although features and distance metrics can be handcrafted or trainable, the latter type has demonstrated more potential to breakthroughs in achieving state-of-the-art performance over public data sets. A recent paradigm that allows to work with trainable features is deep learning, which aims at learning features directly from raw image data. Although deep learning has recently achieved significant improvements in person re-identification, found on some few recent works, there is still room for learning strategies, which can be exploited to increase the current state-of-the-art performance. In this work a novel deep learning strategy is proposed, called here as coarse-to-fine learning (CFL), as well as a novel type of feature, called convolutional covariance features (CCF), for person re-identification. CFL is based on the human learning process. The core of CFL is a framework conceived to perform a cascade network training, learning person image features from generic-to-specific concepts about a person. Each network is comprised of a convolutional neural network (CNN) and a deep belief network denoising autoenconder (DBN-DAE). The CNN is responsible to learn local features, while the DBN-DAE learns global features, robust to illumination changing, certain image deformations, horizontal mirroring and image blurring. After extracting the convolutional features via CFL, those ones are then wrapped in covariance matrices, composing the CCF. CCF and flat features were combined to improve the performance of person re-identification in comparison with component features. The performance of the proposed framework was assessed comparatively against 18 state-of-the-art methods by using public data sets (VIPeR, i-LIDS, CUHK01 and CUHK03), cumulative matching characteristic curves and top ranking references. After a thorough analysis, our proposed framework demonstrated a superior performance.Submitted by Diogo Barreiros (diogo.barreiros@ufba.br) on 2017-03-10T14:39:59Z No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5)Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-03-10T14:52:25Z (GMT) No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5)Made available in DSpace on 2017-03-10T14:52:25Z (GMT). No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5)Autonomous robotsPolynomial interpolationStandalone navigationInteligência artificialvisão computacionalAprendizagem de máquinaOn deeply learning features for automatic person image re-identificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisEscola Politécnica / Instituto de MatemáticaPrograma de Pós-Graduação em MecatrônicaUFBABrasilinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALtese_alexandre_versao_final_bd.pdftese_alexandre_versao_final_bd.pdfapplication/pdf3780030https://repositorio.ufba.br/bitstream/ri/21639/1/tese_alexandre_versao_final_bd.pdf765f095f9626a12f3b43a6bf9fdb97f3MD51LICENSElicense.txtlicense.txttext/plain1345https://repositorio.ufba.br/bitstream/ri/21639/2/license.txtff6eaa8b858ea317fded99f125f5fcd0MD52TEXTtese_alexandre_versao_final_bd.pdf.txttese_alexandre_versao_final_bd.pdf.txtExtracted texttext/plain150247https://repositorio.ufba.br/bitstream/ri/21639/3/tese_alexandre_versao_final_bd.pdf.txt75e443f8a47e2b14b41a886b6b7fa4a9MD53ri/216392022-07-05 14:03:44.492oai:repositorio.ufba.br:ri/21639VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBLgoKIFBlbG8gcHJvY2Vzc28gZGUgc3VibWlzc++/vW8gZGUgZG9jdW1lbnRvcywgbyBhdXRvciBvdSBzZXUgcmVwcmVzZW50YW50ZSBsZWdhbCwgYW8gYWNlaXRhciAKZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEsIGNvbmNlZGUgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRhIEJhaGlhIApvIGRpcmVpdG8gZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCBkZSBwcmVzZXJ2Ye+/ve+/vW8uIApFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIGF1dG9yL2NvcHlyaWdodCwgbWFzIGVudGVuZGUgbyBkb2N1bWVudG8gCmNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4KCiBQYXJhIG9zIGRvY3VtZW50b3MgcHVibGljYWRvcyBjb20gcmVwYXNzZSBkZSBkaXJlaXRvcyBkZSBkaXN0cmlidWnvv73vv71vLCBlc3NlIHRlcm1vIGRlIGxpY2Vu77+9YSAKZW50ZW5kZSBxdWU6CgogTWFudGVuZG8gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHJlcGFzc2Fkb3MgYSB0ZXJjZWlyb3MsIGVtIGNhc28gZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8KcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIGludGVncmFsLCBtYXMgbGliZXJhIGFzIGluZm9ybWHvv73vv71lcyBzb2JyZSBvIGRvY3VtZW50bwooTWV0YWRhZG9zIGVzY3JpdGl2b3MpLgoKIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIGVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gCmFzIHJlc3Ryae+/ve+/vWVzIGltcG9zdGFzIHBlbG9zIGVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4KCiBQYXJhIGFzIHB1YmxpY2Hvv73vv71lcyBzZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgQWNlc3NvIEFiZXJ0bywgb3MgZGVw77+9c2l0b3MgCmNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIG1hcyBtYW5077+9bSBhY2Vzc28gaXJyZXN0cml0byAKYW8gbWV0YWRhZG9zIGUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIGNvbnNlbnRpbWVudG8KIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgZXN0YXJlbSBlbSBpbmljaWF0aXZhcyBkZSBhY2Vzc28gYWJlcnRvLgo=Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:03:44Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
On deeply learning features for automatic person image re-identification |
title |
On deeply learning features for automatic person image re-identification |
spellingShingle |
On deeply learning features for automatic person image re-identification Franco, Alexandre da Costa e Silva Autonomous robots Polynomial interpolation Standalone navigation Inteligência artificial visão computacional Aprendizagem de máquina |
title_short |
On deeply learning features for automatic person image re-identification |
title_full |
On deeply learning features for automatic person image re-identification |
title_fullStr |
On deeply learning features for automatic person image re-identification |
title_full_unstemmed |
On deeply learning features for automatic person image re-identification |
title_sort |
On deeply learning features for automatic person image re-identification |
author |
Franco, Alexandre da Costa e Silva |
author_facet |
Franco, Alexandre da Costa e Silva |
author_role |
author |
dc.contributor.author.fl_str_mv |
Franco, Alexandre da Costa e Silva Franco, Alexandre da Costa e Silva |
dc.contributor.advisor1.fl_str_mv |
Oliveira, Luciano Rebouças de |
dc.contributor.referee1.fl_str_mv |
Schnitman, Leizer Lemes, Rubisley de Paula Loula, Angelo Conrado Papa, João Paulo |
contributor_str_mv |
Oliveira, Luciano Rebouças de Schnitman, Leizer Lemes, Rubisley de Paula Loula, Angelo Conrado Papa, João Paulo |
dc.subject.por.fl_str_mv |
Autonomous robots Polynomial interpolation Standalone navigation Inteligência artificial visão computacional Aprendizagem de máquina |
topic |
Autonomous robots Polynomial interpolation Standalone navigation Inteligência artificial visão computacional Aprendizagem de máquina |
description |
The automatic person re-identification (re-id) problem resides in matching an unknown person image to a database of previously labeled images of people. Among several issues to cope with this research field, person re-id has to deal with person appearance and environment variations. As such, discriminative features to represent a person identity must be robust regardless those variations. Comparison among two image features is commonly accomplished by distance metrics. Although features and distance metrics can be handcrafted or trainable, the latter type has demonstrated more potential to breakthroughs in achieving state-of-the-art performance over public data sets. A recent paradigm that allows to work with trainable features is deep learning, which aims at learning features directly from raw image data. Although deep learning has recently achieved significant improvements in person re-identification, found on some few recent works, there is still room for learning strategies, which can be exploited to increase the current state-of-the-art performance. In this work a novel deep learning strategy is proposed, called here as coarse-to-fine learning (CFL), as well as a novel type of feature, called convolutional covariance features (CCF), for person re-identification. CFL is based on the human learning process. The core of CFL is a framework conceived to perform a cascade network training, learning person image features from generic-to-specific concepts about a person. Each network is comprised of a convolutional neural network (CNN) and a deep belief network denoising autoenconder (DBN-DAE). The CNN is responsible to learn local features, while the DBN-DAE learns global features, robust to illumination changing, certain image deformations, horizontal mirroring and image blurring. After extracting the convolutional features via CFL, those ones are then wrapped in covariance matrices, composing the CCF. CCF and flat features were combined to improve the performance of person re-identification in comparison with component features. The performance of the proposed framework was assessed comparatively against 18 state-of-the-art methods by using public data sets (VIPeR, i-LIDS, CUHK01 and CUHK03), cumulative matching characteristic curves and top ranking references. After a thorough analysis, our proposed framework demonstrated a superior performance. |
publishDate |
2016 |
dc.date.submitted.none.fl_str_mv |
2016-05-13 |
dc.date.accessioned.fl_str_mv |
2017-03-10T14:52:25Z |
dc.date.available.fl_str_mv |
2017-03-10T14:52:25Z |
dc.date.issued.fl_str_mv |
2017-03-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufba.br/ri/handle/ri/21639 |
url |
http://repositorio.ufba.br/ri/handle/ri/21639 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Escola Politécnica / Instituto de Matemática |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Mecatrônica |
dc.publisher.initials.fl_str_mv |
UFBA |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Escola Politécnica / Instituto de Matemática |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/21639/1/tese_alexandre_versao_final_bd.pdf https://repositorio.ufba.br/bitstream/ri/21639/2/license.txt https://repositorio.ufba.br/bitstream/ri/21639/3/tese_alexandre_versao_final_bd.pdf.txt |
bitstream.checksum.fl_str_mv |
765f095f9626a12f3b43a6bf9fdb97f3 ff6eaa8b858ea317fded99f125f5fcd0 75e443f8a47e2b14b41a886b6b7fa4a9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459532491292672 |