Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade

Detalhes bibliográficos
Autor(a) principal: Melo, Dirceu de Freitas Piedade
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://repositorio.ufba.br/ri/handle/ri/25713
Resumo: O advento da tecnologia digital favoreceu um extraordinário aumento da capacidade de armazenamento e compartilhamento de arquivos de conteúdo musical, o que motivou algumas corporações a incluírem em suas plataformas, algoritmos computacionais para o gerenciamento automático de grandes bibliotecas de música digital. A classificação de gêneros musicais tem chamado a atenção como uma das formas de organização deste tipo de biblioteca, e nas últimas décadas, tem se tornado objeto de estudo de pesquisadores de um campo multidisciplinar emergente conhecido como Recuperação de Informações Musicais (MIR). A maioria dos trabalhos desse campo de pesquisa adota a estratégia de categorização de gêneros musicais usando a extração de atributos (ritmo, melodia e timbre) como uma de suas etapas essenciais. Dentre esses atributos, o ritmo desempenha um papel muito importante na definição do estilo musical. O estudo da rítmica em sinais de áudio inclui a investigação de características de regularidade de seus transientes. A auto-similaridade dos sinais pode dar informações relevantes sobre essa regularidade, e desta forma, contribuir para o estudo da complexidade rítmica de uma música. A maioria dos trabalhos do campo de processamento de sinais têm estudado a auto-similaridade em música digital utilizando o histograma de batidas. Existe uma carência na diversidade de descritores rítmicos para sinais de áudio, e o campo de processamento de sinais está restrito à técnicas baseadas em representações tempo-frequência. Novos tipos de descritores poderiam colaborar com os algoritmos tradicionais, para a melhorar a extração de características rítmicas, oferecendo outro ponto de vista para essa tarefa. Esta tese propõe uma metodologia para identificar padrões de auto-similaridade em sinais de áudio, usando propriedades topológicas de redes, denominado de Descritor de Visibilidade em Flutuações de Variância (DVFV). Este descritor é constituído de: Modularidade - Q, Número de Comunidades - Nc, Grau Médio - < k > e Densidade (Delta). Os resultados experimentais obtidos com o cálculo do DVFV em 1.000 grafos de visibilidade, correspondentes a 1.000 sinais, categorizados em 10 gêneros musicais, mostraram que o DVFV é capaz de detectar gráfica e numericamente, padrões de auto-similaridade em sinais classificados em gêneros musicais, de estabelecer uma relação hierárquica de categorias usando propriedades de redes, e de contribuir para que um sistema de classificação alcance precisão comparável ou superior a trabalhos correlatos.
id UFBA-2_98a56189c041e2e5b8ad57fc79e2bda8
oai_identifier_str oai:repositorio.ufba.br:ri/25713
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Melo, Dirceu de Freitas PiedadeMelo, Dirceu de Freitas PiedadePereira, Hernane Barros de BorgesFadigas, Inácio de SousaMonteiro, Roberto Luiz SouzaSouza, Elias Ramos deGonçalves, Marcelo Albano Moret SimõesSimas Filho, Eduardo Furtado de2018-04-10T13:58:44Z2018-04-10T13:58:44Z2018-04-102017-11-23Tesehttp://repositorio.ufba.br/ri/handle/ri/25713O advento da tecnologia digital favoreceu um extraordinário aumento da capacidade de armazenamento e compartilhamento de arquivos de conteúdo musical, o que motivou algumas corporações a incluírem em suas plataformas, algoritmos computacionais para o gerenciamento automático de grandes bibliotecas de música digital. A classificação de gêneros musicais tem chamado a atenção como uma das formas de organização deste tipo de biblioteca, e nas últimas décadas, tem se tornado objeto de estudo de pesquisadores de um campo multidisciplinar emergente conhecido como Recuperação de Informações Musicais (MIR). A maioria dos trabalhos desse campo de pesquisa adota a estratégia de categorização de gêneros musicais usando a extração de atributos (ritmo, melodia e timbre) como uma de suas etapas essenciais. Dentre esses atributos, o ritmo desempenha um papel muito importante na definição do estilo musical. O estudo da rítmica em sinais de áudio inclui a investigação de características de regularidade de seus transientes. A auto-similaridade dos sinais pode dar informações relevantes sobre essa regularidade, e desta forma, contribuir para o estudo da complexidade rítmica de uma música. A maioria dos trabalhos do campo de processamento de sinais têm estudado a auto-similaridade em música digital utilizando o histograma de batidas. Existe uma carência na diversidade de descritores rítmicos para sinais de áudio, e o campo de processamento de sinais está restrito à técnicas baseadas em representações tempo-frequência. Novos tipos de descritores poderiam colaborar com os algoritmos tradicionais, para a melhorar a extração de características rítmicas, oferecendo outro ponto de vista para essa tarefa. Esta tese propõe uma metodologia para identificar padrões de auto-similaridade em sinais de áudio, usando propriedades topológicas de redes, denominado de Descritor de Visibilidade em Flutuações de Variância (DVFV). Este descritor é constituído de: Modularidade - Q, Número de Comunidades - Nc, Grau Médio - < k > e Densidade (Delta). Os resultados experimentais obtidos com o cálculo do DVFV em 1.000 grafos de visibilidade, correspondentes a 1.000 sinais, categorizados em 10 gêneros musicais, mostraram que o DVFV é capaz de detectar gráfica e numericamente, padrões de auto-similaridade em sinais classificados em gêneros musicais, de estabelecer uma relação hierárquica de categorias usando propriedades de redes, e de contribuir para que um sistema de classificação alcance precisão comparável ou superior a trabalhos correlatos.ABSTRAC The advent of digital technology favored an extraordinary increase in the storage capacity and sharing of music content files, which motivated some corporations to include in their platforms computational algorithms for the automatic management of large digital music libraries. The classification of musical genres has attracted attention as one of the forms of organization of this type of library, and in recent decades, has become the object of study of researchers of an emerging multidisciplinary field known as Music Information Retrieval (MIR). Most of the works in this field of research adopt the strategy of categorization of musical genres using the extraction of attributes (rhythm, melody and timbre) as one of its essential stages. Among these attributes, rhythm plays a very important role in the definition of musical style. The study of rhythmic in audio signals includes the investigation of regularity characteristics of their transients. The self-similarity of the signals can give relevant information about this regularity, and thus contribute to the study of the rhythmic complexity of a song. Most of the works of the signal processing field have studied self-similarity in digital music using the beat histogram. There is a lack in the diversity of rhythm descriptors for audio signals, and the signal processing field is restricted to techniques based on time-frequency representations. New types of descriptors could collaborate with traditional algorithms to improve the extraction of rhythmic features, providing another point of view for this task. This thesis proposes a methodology to identify self-similarity patterns in audio signals, using topological properties of networks, called Variance Fluctuation Visibility Descriptor (DVFV). This descriptor consists of: Modularity - Q, Number of Communities - Nc, Average Degree - < k > and Density (Delta). The experimental results obtained with the calculation of DVFV in 1.000 graphs of visibility, corresponding to 1.000 signs, categorized in 10 musical genres, showed that the DVFV is able to detect graphically and numerically, self-similarity patterns in signals classified in musical genres, establish a hierarchical relationship of categories using properties of networks, and contribute for a classification system to reach comparable or superior precision to related works.Submitted by Dirceu Melo (dirceumelo@ymail.com) on 2018-04-05T09:57:27Z No. of bitstreams: 1 TESE_DIRCEU_MELO_ABNT.pdf: 9074956 bytes, checksum: ab3e41a80f3202028098ae8591fc5ba4 (MD5)Approved for entry into archive by Maria Auxiliadora da Silva Lopes (silopes@ufba.br) on 2018-04-10T13:58:44Z (GMT) No. of bitstreams: 1 TESE_DIRCEU_MELO_ABNT.pdf: 9074956 bytes, checksum: ab3e41a80f3202028098ae8591fc5ba4 (MD5)Made available in DSpace on 2018-04-10T13:58:44Z (GMT). No. of bitstreams: 1 TESE_DIRCEU_MELO_ABNT.pdf: 9074956 bytes, checksum: ab3e41a80f3202028098ae8591fc5ba4 (MD5)MultidisciplinarEducaçãoRedes complexasGrafos de visibilidadeExtração de atributosRecuparação de informações musicaisClassificaçãoComplex networksVisibility graphsFeature extractionMusic information retrievalClassificationEstudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisFaculdade de EducaçãoPrograma do Doutorado Multidisciplinar e Multiinstitucional em Difusão do ConhecimentoUFBA/Facedbrasilinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALTESE_DIRCEU_MELO_ABNT.pdfTESE_DIRCEU_MELO_ABNT.pdfapplication/pdf9074956https://repositorio.ufba.br/bitstream/ri/25713/1/TESE_DIRCEU_MELO_ABNT.pdfab3e41a80f3202028098ae8591fc5ba4MD51LICENSElicense.txtlicense.txttext/plain1383https://repositorio.ufba.br/bitstream/ri/25713/2/license.txt690bb9e0ab0d79c4ae420a800ae539f0MD52TEXTTESE_DIRCEU_MELO_ABNT.pdf.txtTESE_DIRCEU_MELO_ABNT.pdf.txtExtracted texttext/plain159647https://repositorio.ufba.br/bitstream/ri/25713/3/TESE_DIRCEU_MELO_ABNT.pdf.txt426f56201bf8a7ac1e32ef4949a8485fMD53ri/257132022-07-05 14:04:02.781oai:repositorio.ufba.br:ri/25713VGVybW8gZGUgTGljZW4/P2EsIG4/P28gZXhjbHVzaXZvLCBwYXJhIG8gZGVwPz9zaXRvIG5vIFJlcG9zaXQ/P3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQkEuCgogUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNzPz9vIGRlIGRvY3VtZW50b3MsIG8gYXV0b3Igb3Ugc2V1IHJlcHJlc2VudGFudGUgbGVnYWwsIGFvIGFjZWl0YXIgCmVzc2UgdGVybW8gZGUgbGljZW4/P2EsIGNvbmNlZGUgYW8gUmVwb3NpdD8/cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgQmFoaWEgCm8gZGlyZWl0byBkZSBtYW50ZXIgdW1hIGM/P3BpYSBlbSBzZXUgcmVwb3NpdD8/cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCBkZSBwcmVzZXJ2YT8/Pz9vLiAKRXNzZXMgdGVybW9zLCBuPz9vIGV4Y2x1c2l2b3MsIG1hbnQ/P20gb3MgZGlyZWl0b3MgZGUgYXV0b3IvY29weXJpZ2h0LCBtYXMgZW50ZW5kZSBvIGRvY3VtZW50byAKY29tbyBwYXJ0ZSBkbyBhY2Vydm8gaW50ZWxlY3R1YWwgZGVzc2EgVW5pdmVyc2lkYWRlLgoKIFBhcmEgb3MgZG9jdW1lbnRvcyBwdWJsaWNhZG9zIGNvbSByZXBhc3NlIGRlIGRpcmVpdG9zIGRlIGRpc3RyaWJ1aT8/Pz9vLCBlc3NlIHRlcm1vIGRlIGxpY2VuPz9hIAplbnRlbmRlIHF1ZToKCiBNYW50ZW5kbyBvcyBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyBkZSBwdWJsaWNhPz8/P2VzLCBvIHJlcG9zaXQ/P3Jpbwpwb2RlIHJlc3RyaW5naXIgbyBhY2Vzc28gYW8gdGV4dG8gaW50ZWdyYWwsIG1hcyBsaWJlcmEgYXMgaW5mb3JtYT8/Pz9lcyBzb2JyZSBvIGRvY3VtZW50bwooTWV0YWRhZG9zIGVzY3JpdGl2b3MpLgoKIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIGVtIG1hbnRlciBzdWEgcHJvZHU/Pz8/byBjaWVudD8/ZmljYSBjb20gCmFzIHJlc3RyaT8/Pz9lcyBpbXBvc3RhcyBwZWxvcyBlZGl0b3JlcyBkZSBwZXJpPz9kaWNvcy4KCiBQYXJhIGFzIHB1YmxpY2E/Pz8/ZXMgc2VtIGluaWNpYXRpdmFzIHF1ZSBzZWd1ZW0gYSBwb2w/P3RpY2EgZGUgQWNlc3NvIEFiZXJ0bywgb3MgZGVwPz9zaXRvcyAKY29tcHVscz8/cmlvcyBuZXNzZSByZXBvc2l0Pz9yaW8gbWFudD8/bSBvcyBkaXJlaXRvcyBhdXRvcmFpcywgbWFzIG1hbnQ/P20gYWNlc3NvIGlycmVzdHJpdG8gCmFvIG1ldGFkYWRvcyBlIHRleHRvIGNvbXBsZXRvLiBBc3NpbSwgYSBhY2VpdGE/Pz8/byBkZXNzZSB0ZXJtbyBuPz9vIG5lY2Vzc2l0YSBkZSBjb25zZW50aW1lbnRvCiBwb3IgcGFydGUgZGUgYXV0b3Jlcy9kZXRlbnRvcmVzIGRvcyBkaXJlaXRvcywgcG9yIGVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KRepositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:04:02Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
title Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
spellingShingle Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
Melo, Dirceu de Freitas Piedade
Multidisciplinar
Educação
Redes complexas
Grafos de visibilidade
Extração de atributos
Recuparação de informações musicais
Classificação
Complex networks
Visibility graphs
Feature extraction
Music information retrieval
Classification
title_short Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
title_full Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
title_fullStr Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
title_full_unstemmed Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
title_sort Estudo de padrões em sinais musicais sob a perspectiva dos grafos de visibilidade
author Melo, Dirceu de Freitas Piedade
author_facet Melo, Dirceu de Freitas Piedade
author_role author
dc.contributor.author.fl_str_mv Melo, Dirceu de Freitas Piedade
Melo, Dirceu de Freitas Piedade
dc.contributor.advisor1.fl_str_mv Pereira, Hernane Barros de Borges
dc.contributor.advisor-co1.fl_str_mv Fadigas, Inácio de Sousa
dc.contributor.referee1.fl_str_mv Monteiro, Roberto Luiz Souza
Souza, Elias Ramos de
Gonçalves, Marcelo Albano Moret Simões
Simas Filho, Eduardo Furtado de
contributor_str_mv Pereira, Hernane Barros de Borges
Fadigas, Inácio de Sousa
Monteiro, Roberto Luiz Souza
Souza, Elias Ramos de
Gonçalves, Marcelo Albano Moret Simões
Simas Filho, Eduardo Furtado de
dc.subject.cnpq.fl_str_mv Multidisciplinar
Educação
topic Multidisciplinar
Educação
Redes complexas
Grafos de visibilidade
Extração de atributos
Recuparação de informações musicais
Classificação
Complex networks
Visibility graphs
Feature extraction
Music information retrieval
Classification
dc.subject.por.fl_str_mv Redes complexas
Grafos de visibilidade
Extração de atributos
Recuparação de informações musicais
Classificação
Complex networks
Visibility graphs
Feature extraction
Music information retrieval
Classification
description O advento da tecnologia digital favoreceu um extraordinário aumento da capacidade de armazenamento e compartilhamento de arquivos de conteúdo musical, o que motivou algumas corporações a incluírem em suas plataformas, algoritmos computacionais para o gerenciamento automático de grandes bibliotecas de música digital. A classificação de gêneros musicais tem chamado a atenção como uma das formas de organização deste tipo de biblioteca, e nas últimas décadas, tem se tornado objeto de estudo de pesquisadores de um campo multidisciplinar emergente conhecido como Recuperação de Informações Musicais (MIR). A maioria dos trabalhos desse campo de pesquisa adota a estratégia de categorização de gêneros musicais usando a extração de atributos (ritmo, melodia e timbre) como uma de suas etapas essenciais. Dentre esses atributos, o ritmo desempenha um papel muito importante na definição do estilo musical. O estudo da rítmica em sinais de áudio inclui a investigação de características de regularidade de seus transientes. A auto-similaridade dos sinais pode dar informações relevantes sobre essa regularidade, e desta forma, contribuir para o estudo da complexidade rítmica de uma música. A maioria dos trabalhos do campo de processamento de sinais têm estudado a auto-similaridade em música digital utilizando o histograma de batidas. Existe uma carência na diversidade de descritores rítmicos para sinais de áudio, e o campo de processamento de sinais está restrito à técnicas baseadas em representações tempo-frequência. Novos tipos de descritores poderiam colaborar com os algoritmos tradicionais, para a melhorar a extração de características rítmicas, oferecendo outro ponto de vista para essa tarefa. Esta tese propõe uma metodologia para identificar padrões de auto-similaridade em sinais de áudio, usando propriedades topológicas de redes, denominado de Descritor de Visibilidade em Flutuações de Variância (DVFV). Este descritor é constituído de: Modularidade - Q, Número de Comunidades - Nc, Grau Médio - < k > e Densidade (Delta). Os resultados experimentais obtidos com o cálculo do DVFV em 1.000 grafos de visibilidade, correspondentes a 1.000 sinais, categorizados em 10 gêneros musicais, mostraram que o DVFV é capaz de detectar gráfica e numericamente, padrões de auto-similaridade em sinais classificados em gêneros musicais, de estabelecer uma relação hierárquica de categorias usando propriedades de redes, e de contribuir para que um sistema de classificação alcance precisão comparável ou superior a trabalhos correlatos.
publishDate 2017
dc.date.submitted.none.fl_str_mv 2017-11-23
dc.date.accessioned.fl_str_mv 2018-04-10T13:58:44Z
dc.date.available.fl_str_mv 2018-04-10T13:58:44Z
dc.date.issued.fl_str_mv 2018-04-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufba.br/ri/handle/ri/25713
dc.identifier.other.none.fl_str_mv Tese
identifier_str_mv Tese
url http://repositorio.ufba.br/ri/handle/ri/25713
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Faculdade de Educação
dc.publisher.program.fl_str_mv Programa do Doutorado Multidisciplinar e Multiinstitucional em Difusão do Conhecimento
dc.publisher.initials.fl_str_mv UFBA/Faced
dc.publisher.country.fl_str_mv brasil
publisher.none.fl_str_mv Faculdade de Educação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/25713/1/TESE_DIRCEU_MELO_ABNT.pdf
https://repositorio.ufba.br/bitstream/ri/25713/2/license.txt
https://repositorio.ufba.br/bitstream/ri/25713/3/TESE_DIRCEU_MELO_ABNT.pdf.txt
bitstream.checksum.fl_str_mv ab3e41a80f3202028098ae8591fc5ba4
690bb9e0ab0d79c4ae420a800ae539f0
426f56201bf8a7ac1e32ef4949a8485f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459557410701312